| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: strandmark@google.com (Petter Strandmark) |
| |
| #include "ceres/gradient_problem.h" |
| |
| #include "gtest/gtest.h" |
| |
| namespace ceres::internal { |
| |
| class QuadraticTestFunction : public ceres::FirstOrderFunction { |
| public: |
| explicit QuadraticTestFunction(bool* flag_to_set_on_destruction = nullptr) |
| : flag_to_set_on_destruction_(flag_to_set_on_destruction) {} |
| |
| ~QuadraticTestFunction() override { |
| if (flag_to_set_on_destruction_) { |
| *flag_to_set_on_destruction_ = true; |
| } |
| } |
| |
| bool Evaluate(const double* parameters, |
| double* cost, |
| double* gradient) const final { |
| const double x = parameters[0]; |
| cost[0] = x * x; |
| if (gradient != nullptr) { |
| gradient[0] = 2.0 * x; |
| } |
| return true; |
| } |
| |
| int NumParameters() const final { return 1; } |
| |
| private: |
| bool* flag_to_set_on_destruction_; |
| }; |
| |
| TEST(GradientProblem, TakesOwnershipOfFirstOrderFunction) { |
| bool is_destructed = false; |
| { |
| ceres::GradientProblem problem( |
| std::make_unique<QuadraticTestFunction>(&is_destructed)); |
| } |
| EXPECT_TRUE(is_destructed); |
| } |
| |
| TEST(GradientProblem, EvaluationWithManifoldAndNoGradient) { |
| ceres::GradientProblem problem(std::make_unique<QuadraticTestFunction>(), |
| std::make_unique<EuclideanManifold<1>>()); |
| double x = 7.0; |
| double cost = 0; |
| problem.Evaluate(&x, &cost, nullptr); |
| EXPECT_EQ(x * x, cost); |
| } |
| |
| TEST(GradientProblem, EvaluationWithoutManifoldAndWithGradient) { |
| ceres::GradientProblem problem(std::make_unique<QuadraticTestFunction>()); |
| double x = 7.0; |
| double cost = 0; |
| double gradient = 0; |
| problem.Evaluate(&x, &cost, &gradient); |
| EXPECT_EQ(2.0 * x, gradient); |
| } |
| |
| TEST(GradientProblem, EvaluationWithManifoldAndWithGradient) { |
| ceres::GradientProblem problem(std::make_unique<QuadraticTestFunction>(), |
| std::make_unique<EuclideanManifold<1>>()); |
| double x = 7.0; |
| double cost = 0; |
| double gradient = 0; |
| problem.Evaluate(&x, &cost, &gradient); |
| EXPECT_EQ(2.0 * x, gradient); |
| } |
| |
| } // namespace ceres::internal |