|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: keir@google.com (Keir Mierle) | 
|  | //         sameeragarwal@google.com (Sameer Agarwal) | 
|  | // | 
|  | // System level tests for Ceres. The current suite of two tests. The | 
|  | // first test is a small test based on Powell's Function. It is a | 
|  | // scalar problem with 4 variables. The second problem is a bundle | 
|  | // adjustment problem with 16 cameras and two thousand cameras. The | 
|  | // first problem is to test the sanity test the factorization based | 
|  | // solvers. The second problem is used to test the various | 
|  | // combinations of solvers, orderings, preconditioners and | 
|  | // multithreading. | 
|  |  | 
|  | #include <cmath> | 
|  | #include <cstdio> | 
|  | #include <cstdlib> | 
|  | #include <string> | 
|  |  | 
|  | #include "ceres/autodiff_cost_function.h" | 
|  | #include "ceres/ordered_groups.h" | 
|  | #include "ceres/problem.h" | 
|  | #include "ceres/rotation.h" | 
|  | #include "ceres/solver.h" | 
|  | #include "ceres/stringprintf.h" | 
|  | #include "ceres/test_util.h" | 
|  | #include "ceres/types.h" | 
|  | #include "gflags/gflags.h" | 
|  | #include "glog/logging.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | const bool kAutomaticOrdering = true; | 
|  | const bool kUserOrdering = false; | 
|  |  | 
|  | // Struct used for configuring the solver. | 
|  | struct SolverConfig { | 
|  | SolverConfig( | 
|  | LinearSolverType linear_solver_type, | 
|  | SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type, | 
|  | bool use_automatic_ordering) | 
|  | : linear_solver_type(linear_solver_type), | 
|  | sparse_linear_algebra_library_type(sparse_linear_algebra_library_type), | 
|  | use_automatic_ordering(use_automatic_ordering), | 
|  | preconditioner_type(IDENTITY), | 
|  | num_threads(1) { | 
|  | } | 
|  |  | 
|  | SolverConfig( | 
|  | LinearSolverType linear_solver_type, | 
|  | SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type, | 
|  | bool use_automatic_ordering, | 
|  | PreconditionerType preconditioner_type) | 
|  | : linear_solver_type(linear_solver_type), | 
|  | sparse_linear_algebra_library_type(sparse_linear_algebra_library_type), | 
|  | use_automatic_ordering(use_automatic_ordering), | 
|  | preconditioner_type(preconditioner_type), | 
|  | num_threads(1) { | 
|  | } | 
|  |  | 
|  | string ToString() const { | 
|  | return StringPrintf( | 
|  | "(%s, %s, %s, %s, %d)", | 
|  | LinearSolverTypeToString(linear_solver_type), | 
|  | SparseLinearAlgebraLibraryTypeToString( | 
|  | sparse_linear_algebra_library_type), | 
|  | use_automatic_ordering ? "AUTOMATIC" : "USER", | 
|  | PreconditionerTypeToString(preconditioner_type), | 
|  | num_threads); | 
|  | } | 
|  |  | 
|  | LinearSolverType linear_solver_type; | 
|  | SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type; | 
|  | bool use_automatic_ordering; | 
|  | PreconditionerType preconditioner_type; | 
|  | int num_threads; | 
|  | }; | 
|  |  | 
|  | // Templated function that given a set of solver configurations, | 
|  | // instantiates a new copy of SystemTestProblem for each configuration | 
|  | // and solves it. The solutions are expected to have residuals with | 
|  | // coordinate-wise maximum absolute difference less than or equal to | 
|  | // max_abs_difference. | 
|  | // | 
|  | // The template parameter SystemTestProblem is expected to implement | 
|  | // the following interface. | 
|  | // | 
|  | //   class SystemTestProblem { | 
|  | //     public: | 
|  | //       SystemTestProblem(); | 
|  | //       Problem* mutable_problem(); | 
|  | //       Solver::Options* mutable_solver_options(); | 
|  | //   }; | 
|  | template <typename SystemTestProblem> | 
|  | void RunSolversAndCheckTheyMatch(const vector<SolverConfig>& configurations, | 
|  | const double max_abs_difference) { | 
|  | int num_configurations = configurations.size(); | 
|  | vector<SystemTestProblem*> problems; | 
|  | vector<vector<double> > final_residuals(num_configurations); | 
|  |  | 
|  | for (int i = 0; i < num_configurations; ++i) { | 
|  | SystemTestProblem* system_test_problem = new SystemTestProblem(); | 
|  |  | 
|  | const SolverConfig& config = configurations[i]; | 
|  |  | 
|  | Solver::Options& options = *(system_test_problem->mutable_solver_options()); | 
|  | options.linear_solver_type = config.linear_solver_type; | 
|  | options.sparse_linear_algebra_library_type = | 
|  | config.sparse_linear_algebra_library_type; | 
|  | options.preconditioner_type = config.preconditioner_type; | 
|  | options.num_threads = config.num_threads; | 
|  | options.num_linear_solver_threads = config.num_threads; | 
|  |  | 
|  | if (config.use_automatic_ordering) { | 
|  | delete options.linear_solver_ordering; | 
|  | options.linear_solver_ordering = NULL; | 
|  | } | 
|  |  | 
|  | LOG(INFO) << "Running solver configuration: " | 
|  | << config.ToString(); | 
|  |  | 
|  | Solver::Summary summary; | 
|  | Solve(options, | 
|  | system_test_problem->mutable_problem(), | 
|  | &summary); | 
|  |  | 
|  | system_test_problem | 
|  | ->mutable_problem() | 
|  | ->Evaluate(Problem::EvaluateOptions(), | 
|  | NULL, | 
|  | &final_residuals[i], | 
|  | NULL, | 
|  | NULL); | 
|  |  | 
|  | CHECK_NE(summary.termination_type, ceres::FAILURE) | 
|  | << "Solver configuration " << i << " failed."; | 
|  | problems.push_back(system_test_problem); | 
|  |  | 
|  | // Compare the resulting solutions to each other. Arbitrarily take | 
|  | // SPARSE_NORMAL_CHOLESKY as the golden solve. We compare | 
|  | // solutions by comparing their residual vectors. We do not | 
|  | // compare parameter vectors because it is much more brittle and | 
|  | // error prone to do so, since the same problem can have nearly | 
|  | // the same residuals at two completely different positions in | 
|  | // parameter space. | 
|  | if (i > 0) { | 
|  | const vector<double>& reference_residuals = final_residuals[0]; | 
|  | const vector<double>& current_residuals = final_residuals[i]; | 
|  |  | 
|  | for (int j = 0; j < reference_residuals.size(); ++j) { | 
|  | EXPECT_NEAR(current_residuals[j], | 
|  | reference_residuals[j], | 
|  | max_abs_difference) | 
|  | << "Not close enough residual:" << j | 
|  | << " reference " << reference_residuals[j] | 
|  | << " current " << current_residuals[j]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < num_configurations; ++i) { | 
|  | delete problems[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // This class implements the SystemTestProblem interface and provides | 
|  | // access to an implementation of Powell's singular function. | 
|  | // | 
|  | //   F = 1/2 (f1^2 + f2^2 + f3^2 + f4^2) | 
|  | // | 
|  | //   f1 = x1 + 10*x2; | 
|  | //   f2 = sqrt(5) * (x3 - x4) | 
|  | //   f3 = (x2 - 2*x3)^2 | 
|  | //   f4 = sqrt(10) * (x1 - x4)^2 | 
|  | // | 
|  | // The starting values are x1 = 3, x2 = -1, x3 = 0, x4 = 1. | 
|  | // The minimum is 0 at (x1, x2, x3, x4) = 0. | 
|  | // | 
|  | // From: Testing Unconstrained Optimization Software by Jorge J. More, Burton S. | 
|  | // Garbow and Kenneth E. Hillstrom in ACM Transactions on Mathematical Software, | 
|  | // Vol 7(1), March 1981. | 
|  | class PowellsFunction { | 
|  | public: | 
|  | PowellsFunction() { | 
|  | x_[0] =  3.0; | 
|  | x_[1] = -1.0; | 
|  | x_[2] =  0.0; | 
|  | x_[3] =  1.0; | 
|  |  | 
|  | problem_.AddResidualBlock( | 
|  | new AutoDiffCostFunction<F1, 1, 1, 1>(new F1), NULL, &x_[0], &x_[1]); | 
|  | problem_.AddResidualBlock( | 
|  | new AutoDiffCostFunction<F2, 1, 1, 1>(new F2), NULL, &x_[2], &x_[3]); | 
|  | problem_.AddResidualBlock( | 
|  | new AutoDiffCostFunction<F3, 1, 1, 1>(new F3), NULL, &x_[1], &x_[2]); | 
|  | problem_.AddResidualBlock( | 
|  | new AutoDiffCostFunction<F4, 1, 1, 1>(new F4), NULL, &x_[0], &x_[3]); | 
|  |  | 
|  | options_.max_num_iterations = 10; | 
|  | } | 
|  |  | 
|  | Problem* mutable_problem() { return &problem_; } | 
|  | Solver::Options* mutable_solver_options() { return &options_; } | 
|  |  | 
|  | private: | 
|  | // Templated functions used for automatically differentiated cost | 
|  | // functions. | 
|  | class F1 { | 
|  | public: | 
|  | template <typename T> bool operator()(const T* const x1, | 
|  | const T* const x2, | 
|  | T* residual) const { | 
|  | // f1 = x1 + 10 * x2; | 
|  | *residual = *x1 + T(10.0) * *x2; | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | class F2 { | 
|  | public: | 
|  | template <typename T> bool operator()(const T* const x3, | 
|  | const T* const x4, | 
|  | T* residual) const { | 
|  | // f2 = sqrt(5) (x3 - x4) | 
|  | *residual = T(sqrt(5.0)) * (*x3 - *x4); | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | class F3 { | 
|  | public: | 
|  | template <typename T> bool operator()(const T* const x2, | 
|  | const T* const x4, | 
|  | T* residual) const { | 
|  | // f3 = (x2 - 2 x3)^2 | 
|  | residual[0] = (x2[0] - T(2.0) * x4[0]) * (x2[0] - T(2.0) * x4[0]); | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | class F4 { | 
|  | public: | 
|  | template <typename T> bool operator()(const T* const x1, | 
|  | const T* const x4, | 
|  | T* residual) const { | 
|  | // f4 = sqrt(10) (x1 - x4)^2 | 
|  | residual[0] = T(sqrt(10.0)) * (x1[0] - x4[0]) * (x1[0] - x4[0]); | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | double x_[4]; | 
|  | Problem problem_; | 
|  | Solver::Options options_; | 
|  | }; | 
|  |  | 
|  | TEST(SystemTest, PowellsFunction) { | 
|  | vector<SolverConfig> configs; | 
|  | #define CONFIGURE(linear_solver, sparse_linear_algebra_library_type, ordering) \ | 
|  | configs.push_back(SolverConfig(linear_solver,                         \ | 
|  | sparse_linear_algebra_library_type,    \ | 
|  | ordering)) | 
|  |  | 
|  | CONFIGURE(DENSE_QR,               SUITE_SPARSE, kAutomaticOrdering); | 
|  | CONFIGURE(DENSE_NORMAL_CHOLESKY,  SUITE_SPARSE, kAutomaticOrdering); | 
|  | CONFIGURE(DENSE_SCHUR,            SUITE_SPARSE, kAutomaticOrdering); | 
|  |  | 
|  | #ifndef CERES_NO_SUITESPARSE | 
|  | CONFIGURE(SPARSE_NORMAL_CHOLESKY, SUITE_SPARSE, kAutomaticOrdering); | 
|  | #endif  // CERES_NO_SUITESPARSE | 
|  |  | 
|  | #ifndef CERES_NO_CXSPARSE | 
|  | CONFIGURE(SPARSE_NORMAL_CHOLESKY, CX_SPARSE,    kAutomaticOrdering); | 
|  | #endif  // CERES_NO_CXSPARSE | 
|  |  | 
|  | CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kAutomaticOrdering); | 
|  |  | 
|  | #undef CONFIGURE | 
|  |  | 
|  | const double kMaxAbsoluteDifference = 1e-8; | 
|  | RunSolversAndCheckTheyMatch<PowellsFunction>(configs, kMaxAbsoluteDifference); | 
|  | } | 
|  |  | 
|  | // This class implements the SystemTestProblem interface and provides | 
|  | // access to a bundle adjustment problem. It is based on | 
|  | // examples/bundle_adjustment_example.cc. Currently a small 16 camera | 
|  | // problem is hard coded in the constructor. Going forward we may | 
|  | // extend this to a larger number of problems. | 
|  | class BundleAdjustmentProblem { | 
|  | public: | 
|  | BundleAdjustmentProblem() { | 
|  | const string input_file = TestFileAbsolutePath("problem-16-22106-pre.txt"); | 
|  | ReadData(input_file); | 
|  | BuildProblem(); | 
|  | } | 
|  |  | 
|  | ~BundleAdjustmentProblem() { | 
|  | delete []point_index_; | 
|  | delete []camera_index_; | 
|  | delete []observations_; | 
|  | delete []parameters_; | 
|  | } | 
|  |  | 
|  | Problem* mutable_problem() { return &problem_; } | 
|  | Solver::Options* mutable_solver_options() { return &options_; } | 
|  |  | 
|  | int num_cameras()            const { return num_cameras_;        } | 
|  | int num_points()             const { return num_points_;         } | 
|  | int num_observations()       const { return num_observations_;   } | 
|  | const int* point_index()     const { return point_index_;  } | 
|  | const int* camera_index()    const { return camera_index_; } | 
|  | const double* observations() const { return observations_; } | 
|  | double* mutable_cameras() { return parameters_; } | 
|  | double* mutable_points() { return parameters_  + 9 * num_cameras_; } | 
|  |  | 
|  | private: | 
|  | void ReadData(const string& filename) { | 
|  | FILE * fptr = fopen(filename.c_str(), "r"); | 
|  |  | 
|  | if (!fptr) { | 
|  | LOG(FATAL) << "File Error: unable to open file " << filename; | 
|  | }; | 
|  |  | 
|  | // This will die horribly on invalid files. Them's the breaks. | 
|  | FscanfOrDie(fptr, "%d", &num_cameras_); | 
|  | FscanfOrDie(fptr, "%d", &num_points_); | 
|  | FscanfOrDie(fptr, "%d", &num_observations_); | 
|  |  | 
|  | VLOG(1) << "Header: " << num_cameras_ | 
|  | << " " << num_points_ | 
|  | << " " << num_observations_; | 
|  |  | 
|  | point_index_ = new int[num_observations_]; | 
|  | camera_index_ = new int[num_observations_]; | 
|  | observations_ = new double[2 * num_observations_]; | 
|  |  | 
|  | num_parameters_ = 9 * num_cameras_ + 3 * num_points_; | 
|  | parameters_ = new double[num_parameters_]; | 
|  |  | 
|  | for (int i = 0; i < num_observations_; ++i) { | 
|  | FscanfOrDie(fptr, "%d", camera_index_ + i); | 
|  | FscanfOrDie(fptr, "%d", point_index_ + i); | 
|  | for (int j = 0; j < 2; ++j) { | 
|  | FscanfOrDie(fptr, "%lf", observations_ + 2*i + j); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < num_parameters_; ++i) { | 
|  | FscanfOrDie(fptr, "%lf", parameters_ + i); | 
|  | } | 
|  | } | 
|  |  | 
|  | void BuildProblem() { | 
|  | double* points = mutable_points(); | 
|  | double* cameras = mutable_cameras(); | 
|  |  | 
|  | for (int i = 0; i < num_observations(); ++i) { | 
|  | // Each Residual block takes a point and a camera as input and | 
|  | // outputs a 2 dimensional residual. | 
|  | CostFunction* cost_function = | 
|  | new AutoDiffCostFunction<BundlerResidual, 2, 9, 3>( | 
|  | new BundlerResidual(observations_[2*i + 0], | 
|  | observations_[2*i + 1])); | 
|  |  | 
|  | // Each observation correponds to a pair of a camera and a point | 
|  | // which are identified by camera_index()[i] and | 
|  | // point_index()[i] respectively. | 
|  | double* camera = cameras + 9 * camera_index_[i]; | 
|  | double* point = points + 3 * point_index()[i]; | 
|  | problem_.AddResidualBlock(cost_function, NULL, camera, point); | 
|  | } | 
|  |  | 
|  | options_.linear_solver_ordering = new ParameterBlockOrdering; | 
|  |  | 
|  | // The points come before the cameras. | 
|  | for (int i = 0; i < num_points_; ++i) { | 
|  | options_.linear_solver_ordering->AddElementToGroup(points + 3 * i, 0); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < num_cameras_; ++i) { | 
|  | options_.linear_solver_ordering->AddElementToGroup(cameras + 9 * i, 1); | 
|  | } | 
|  |  | 
|  | options_.max_num_iterations = 25; | 
|  | options_.function_tolerance = 1e-10; | 
|  | options_.gradient_tolerance = 1e-10; | 
|  | options_.parameter_tolerance = 1e-10; | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | void FscanfOrDie(FILE *fptr, const char *format, T *value) { | 
|  | int num_scanned = fscanf(fptr, format, value); | 
|  | if (num_scanned != 1) { | 
|  | LOG(FATAL) << "Invalid UW data file."; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Templated pinhole camera model.  The camera is parameterized | 
|  | // using 9 parameters. 3 for rotation, 3 for translation, 1 for | 
|  | // focal length and 2 for radial distortion. The principal point is | 
|  | // not modeled (i.e. it is assumed be located at the image center). | 
|  | struct BundlerResidual { | 
|  | // (u, v): the position of the observation with respect to the image | 
|  | // center point. | 
|  | BundlerResidual(double u, double v): u(u), v(v) {} | 
|  |  | 
|  | template <typename T> | 
|  | bool operator()(const T* const camera, | 
|  | const T* const point, | 
|  | T* residuals) const { | 
|  | T p[3]; | 
|  | AngleAxisRotatePoint(camera, point, p); | 
|  |  | 
|  | // Add the translation vector | 
|  | p[0] += camera[3]; | 
|  | p[1] += camera[4]; | 
|  | p[2] += camera[5]; | 
|  |  | 
|  | const T& focal = camera[6]; | 
|  | const T& l1 = camera[7]; | 
|  | const T& l2 = camera[8]; | 
|  |  | 
|  | // Compute the center of distortion.  The sign change comes from | 
|  | // the camera model that Noah Snavely's Bundler assumes, whereby | 
|  | // the camera coordinate system has a negative z axis. | 
|  | T xp = - focal * p[0] / p[2]; | 
|  | T yp = - focal * p[1] / p[2]; | 
|  |  | 
|  | // Apply second and fourth order radial distortion. | 
|  | T r2 = xp*xp + yp*yp; | 
|  | T distortion = T(1.0) + r2  * (l1 + l2  * r2); | 
|  |  | 
|  | residuals[0] = distortion * xp - T(u); | 
|  | residuals[1] = distortion * yp - T(v); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | double u; | 
|  | double v; | 
|  | }; | 
|  |  | 
|  |  | 
|  | Problem problem_; | 
|  | Solver::Options options_; | 
|  |  | 
|  | int num_cameras_; | 
|  | int num_points_; | 
|  | int num_observations_; | 
|  | int num_parameters_; | 
|  |  | 
|  | int* point_index_; | 
|  | int* camera_index_; | 
|  | double* observations_; | 
|  | // The parameter vector is laid out as follows | 
|  | // [camera_1, ..., camera_n, point_1, ..., point_m] | 
|  | double* parameters_; | 
|  | }; | 
|  |  | 
|  | TEST(SystemTest, BundleAdjustmentProblem) { | 
|  | vector<SolverConfig> configs; | 
|  |  | 
|  | #define CONFIGURE(linear_solver, sparse_linear_algebra_library_type, ordering, preconditioner) \ | 
|  | configs.push_back(SolverConfig(linear_solver,                         \ | 
|  | sparse_linear_algebra_library_type,    \ | 
|  | ordering,                              \ | 
|  | preconditioner)) | 
|  |  | 
|  | #ifndef CERES_NO_SUITESPARSE | 
|  | CONFIGURE(SPARSE_NORMAL_CHOLESKY, SUITE_SPARSE, kAutomaticOrdering, IDENTITY); | 
|  | CONFIGURE(SPARSE_NORMAL_CHOLESKY, SUITE_SPARSE, kUserOrdering,      IDENTITY); | 
|  |  | 
|  | CONFIGURE(SPARSE_SCHUR,           SUITE_SPARSE, kAutomaticOrdering, IDENTITY); | 
|  | CONFIGURE(SPARSE_SCHUR,           SUITE_SPARSE, kUserOrdering,      IDENTITY); | 
|  | #endif  // CERES_NO_SUITESPARSE | 
|  |  | 
|  | #ifndef CERES_NO_CXSPARSE | 
|  | CONFIGURE(SPARSE_SCHUR,           CX_SPARSE,    kAutomaticOrdering, IDENTITY); | 
|  | CONFIGURE(SPARSE_SCHUR,           CX_SPARSE,    kUserOrdering,      IDENTITY); | 
|  | #endif  // CERES_NO_CXSPARSE | 
|  |  | 
|  | CONFIGURE(DENSE_SCHUR,            SUITE_SPARSE, kAutomaticOrdering, IDENTITY); | 
|  | CONFIGURE(DENSE_SCHUR,            SUITE_SPARSE, kUserOrdering,      IDENTITY); | 
|  |  | 
|  | CONFIGURE(CGNR,                   SUITE_SPARSE, kAutomaticOrdering, JACOBI); | 
|  | CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kUserOrdering,      JACOBI); | 
|  | CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kUserOrdering,      SCHUR_JACOBI); | 
|  |  | 
|  | #ifndef CERES_NO_SUITESPARSE | 
|  |  | 
|  | CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kUserOrdering,      CLUSTER_JACOBI); | 
|  | CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kUserOrdering,      CLUSTER_TRIDIAGONAL); | 
|  | #endif  // CERES_NO_SUITESPARSE | 
|  |  | 
|  | CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kAutomaticOrdering, JACOBI); | 
|  | CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kAutomaticOrdering, SCHUR_JACOBI); | 
|  |  | 
|  | #ifndef CERES_NO_SUITESPARSE | 
|  |  | 
|  | CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kAutomaticOrdering, CLUSTER_JACOBI); | 
|  | CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kAutomaticOrdering, CLUSTER_TRIDIAGONAL); | 
|  | #endif  // CERES_NO_SUITESPARSE | 
|  |  | 
|  | #undef CONFIGURE | 
|  |  | 
|  | // Single threaded evaluators and linear solvers. | 
|  | const double kMaxAbsoluteDifference = 1e-4; | 
|  | RunSolversAndCheckTheyMatch<BundleAdjustmentProblem>(configs, | 
|  | kMaxAbsoluteDifference); | 
|  |  | 
|  | #ifdef CERES_USE_OPENMP | 
|  | // Multithreaded evaluators and linear solvers. | 
|  | for (int i = 0; i < configs.size(); ++i) { | 
|  | configs[i].num_threads = 2; | 
|  | } | 
|  | RunSolversAndCheckTheyMatch<BundleAdjustmentProblem>(configs, | 
|  | kMaxAbsoluteDifference); | 
|  | #endif  // CERES_USE_OPENMP | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |