| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2015 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/covariance_impl.h" |
| |
| #include <algorithm> |
| #include <cstdlib> |
| #include <memory> |
| #include <numeric> |
| #include <sstream> |
| #include <unordered_set> |
| #include <utility> |
| #include <vector> |
| |
| #include "Eigen/SparseCore" |
| #include "Eigen/SparseQR" |
| #include "Eigen/SVD" |
| |
| #include "ceres/compressed_col_sparse_matrix_utils.h" |
| #include "ceres/compressed_row_sparse_matrix.h" |
| #include "ceres/covariance.h" |
| #include "ceres/crs_matrix.h" |
| #include "ceres/internal/eigen.h" |
| #include "ceres/map_util.h" |
| #include "ceres/parallel_for.h" |
| #include "ceres/parallel_utils.h" |
| #include "ceres/parameter_block.h" |
| #include "ceres/problem_impl.h" |
| #include "ceres/residual_block.h" |
| #include "ceres/suitesparse.h" |
| #include "ceres/wall_time.h" |
| #include "glog/logging.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| using std::make_pair; |
| using std::map; |
| using std::pair; |
| using std::sort; |
| using std::swap; |
| using std::vector; |
| |
| typedef vector<pair<const double*, const double*>> CovarianceBlocks; |
| |
| CovarianceImpl::CovarianceImpl(const Covariance::Options& options) |
| : options_(options), |
| is_computed_(false), |
| is_valid_(false) { |
| #ifdef CERES_NO_THREADS |
| if (options_.num_threads > 1) { |
| LOG(WARNING) |
| << "No threading support is compiled into this binary; " |
| << "only options.num_threads = 1 is supported. Switching " |
| << "to single threaded mode."; |
| options_.num_threads = 1; |
| } |
| #endif |
| |
| evaluate_options_.num_threads = options_.num_threads; |
| evaluate_options_.apply_loss_function = options_.apply_loss_function; |
| } |
| |
| CovarianceImpl::~CovarianceImpl() { |
| } |
| |
| template <typename T> void CheckForDuplicates(vector<T> blocks) { |
| sort(blocks.begin(), blocks.end()); |
| typename vector<T>::iterator it = |
| std::adjacent_find(blocks.begin(), blocks.end()); |
| if (it != blocks.end()) { |
| // In case there are duplicates, we search for their location. |
| map<T, vector<int>> blocks_map; |
| for (int i = 0; i < blocks.size(); ++i) { |
| blocks_map[blocks[i]].push_back(i); |
| } |
| |
| std::ostringstream duplicates; |
| while (it != blocks.end()) { |
| duplicates << "("; |
| for (int i = 0; i < blocks_map[*it].size() - 1; ++i) { |
| duplicates << blocks_map[*it][i] << ", "; |
| } |
| duplicates << blocks_map[*it].back() << ")"; |
| it = std::adjacent_find(it + 1, blocks.end()); |
| if (it < blocks.end()) { |
| duplicates << " and "; |
| } |
| } |
| |
| LOG(FATAL) << "Covariance::Compute called with duplicate blocks at " |
| << "indices " << duplicates.str(); |
| } |
| } |
| |
| bool CovarianceImpl::Compute(const CovarianceBlocks& covariance_blocks, |
| ProblemImpl* problem) { |
| CheckForDuplicates<pair<const double*, const double*>>(covariance_blocks); |
| problem_ = problem; |
| parameter_block_to_row_index_.clear(); |
| covariance_matrix_.reset(NULL); |
| is_valid_ = (ComputeCovarianceSparsity(covariance_blocks, problem) && |
| ComputeCovarianceValues()); |
| is_computed_ = true; |
| return is_valid_; |
| } |
| |
| bool CovarianceImpl::Compute(const vector<const double*>& parameter_blocks, |
| ProblemImpl* problem) { |
| CheckForDuplicates<const double*>(parameter_blocks); |
| CovarianceBlocks covariance_blocks; |
| for (int i = 0; i < parameter_blocks.size(); ++i) { |
| for (int j = i; j < parameter_blocks.size(); ++j) { |
| covariance_blocks.push_back(make_pair(parameter_blocks[i], |
| parameter_blocks[j])); |
| } |
| } |
| |
| return Compute(covariance_blocks, problem); |
| } |
| |
| bool CovarianceImpl::GetCovarianceBlockInTangentOrAmbientSpace( |
| const double* original_parameter_block1, |
| const double* original_parameter_block2, |
| bool lift_covariance_to_ambient_space, |
| double* covariance_block) const { |
| CHECK(is_computed_) |
| << "Covariance::GetCovarianceBlock called before Covariance::Compute"; |
| CHECK(is_valid_) |
| << "Covariance::GetCovarianceBlock called when Covariance::Compute " |
| << "returned false."; |
| |
| // If either of the two parameter blocks is constant, then the |
| // covariance block is also zero. |
| if (constant_parameter_blocks_.count(original_parameter_block1) > 0 || |
| constant_parameter_blocks_.count(original_parameter_block2) > 0) { |
| const ProblemImpl::ParameterMap& parameter_map = problem_->parameter_map(); |
| ParameterBlock* block1 = |
| FindOrDie(parameter_map, |
| const_cast<double*>(original_parameter_block1)); |
| |
| ParameterBlock* block2 = |
| FindOrDie(parameter_map, |
| const_cast<double*>(original_parameter_block2)); |
| |
| const int block1_size = block1->Size(); |
| const int block2_size = block2->Size(); |
| const int block1_local_size = block1->LocalSize(); |
| const int block2_local_size = block2->LocalSize(); |
| if (!lift_covariance_to_ambient_space) { |
| MatrixRef(covariance_block, block1_local_size, block2_local_size) |
| .setZero(); |
| } else { |
| MatrixRef(covariance_block, block1_size, block2_size).setZero(); |
| } |
| return true; |
| } |
| |
| const double* parameter_block1 = original_parameter_block1; |
| const double* parameter_block2 = original_parameter_block2; |
| const bool transpose = parameter_block1 > parameter_block2; |
| if (transpose) { |
| swap(parameter_block1, parameter_block2); |
| } |
| |
| // Find where in the covariance matrix the block is located. |
| const int row_begin = |
| FindOrDie(parameter_block_to_row_index_, parameter_block1); |
| const int col_begin = |
| FindOrDie(parameter_block_to_row_index_, parameter_block2); |
| const int* rows = covariance_matrix_->rows(); |
| const int* cols = covariance_matrix_->cols(); |
| const int row_size = rows[row_begin + 1] - rows[row_begin]; |
| const int* cols_begin = cols + rows[row_begin]; |
| |
| // The only part that requires work is walking the compressed column |
| // vector to determine where the set of columns correspnding to the |
| // covariance block begin. |
| int offset = 0; |
| while (cols_begin[offset] != col_begin && offset < row_size) { |
| ++offset; |
| } |
| |
| if (offset == row_size) { |
| LOG(ERROR) << "Unable to find covariance block for " |
| << original_parameter_block1 << " " |
| << original_parameter_block2; |
| return false; |
| } |
| |
| const ProblemImpl::ParameterMap& parameter_map = problem_->parameter_map(); |
| ParameterBlock* block1 = |
| FindOrDie(parameter_map, const_cast<double*>(parameter_block1)); |
| ParameterBlock* block2 = |
| FindOrDie(parameter_map, const_cast<double*>(parameter_block2)); |
| const LocalParameterization* local_param1 = block1->local_parameterization(); |
| const LocalParameterization* local_param2 = block2->local_parameterization(); |
| const int block1_size = block1->Size(); |
| const int block1_local_size = block1->LocalSize(); |
| const int block2_size = block2->Size(); |
| const int block2_local_size = block2->LocalSize(); |
| |
| ConstMatrixRef cov(covariance_matrix_->values() + rows[row_begin], |
| block1_size, |
| row_size); |
| |
| // Fast path when there are no local parameterizations or if the |
| // user does not want it lifted to the ambient space. |
| if ((local_param1 == NULL && local_param2 == NULL) || |
| !lift_covariance_to_ambient_space) { |
| if (transpose) { |
| MatrixRef(covariance_block, block2_local_size, block1_local_size) = |
| cov.block(0, offset, block1_local_size, |
| block2_local_size).transpose(); |
| } else { |
| MatrixRef(covariance_block, block1_local_size, block2_local_size) = |
| cov.block(0, offset, block1_local_size, block2_local_size); |
| } |
| return true; |
| } |
| |
| // If local parameterizations are used then the covariance that has |
| // been computed is in the tangent space and it needs to be lifted |
| // back to the ambient space. |
| // |
| // This is given by the formula |
| // |
| // C'_12 = J_1 C_12 J_2' |
| // |
| // Where C_12 is the local tangent space covariance for parameter |
| // blocks 1 and 2. J_1 and J_2 are respectively the local to global |
| // jacobians for parameter blocks 1 and 2. |
| // |
| // See Result 5.11 on page 142 of Hartley & Zisserman (2nd Edition) |
| // for a proof. |
| // |
| // TODO(sameeragarwal): Add caching of local parameterization, so |
| // that they are computed just once per parameter block. |
| Matrix block1_jacobian(block1_size, block1_local_size); |
| if (local_param1 == NULL) { |
| block1_jacobian.setIdentity(); |
| } else { |
| local_param1->ComputeJacobian(parameter_block1, block1_jacobian.data()); |
| } |
| |
| Matrix block2_jacobian(block2_size, block2_local_size); |
| // Fast path if the user is requesting a diagonal block. |
| if (parameter_block1 == parameter_block2) { |
| block2_jacobian = block1_jacobian; |
| } else { |
| if (local_param2 == NULL) { |
| block2_jacobian.setIdentity(); |
| } else { |
| local_param2->ComputeJacobian(parameter_block2, block2_jacobian.data()); |
| } |
| } |
| |
| if (transpose) { |
| MatrixRef(covariance_block, block2_size, block1_size) = |
| block2_jacobian * |
| cov.block(0, offset, block1_local_size, block2_local_size).transpose() * |
| block1_jacobian.transpose(); |
| } else { |
| MatrixRef(covariance_block, block1_size, block2_size) = |
| block1_jacobian * |
| cov.block(0, offset, block1_local_size, block2_local_size) * |
| block2_jacobian.transpose(); |
| } |
| |
| return true; |
| } |
| |
| bool CovarianceImpl::GetCovarianceMatrixInTangentOrAmbientSpace( |
| const vector<const double*>& parameters, |
| bool lift_covariance_to_ambient_space, |
| double* covariance_matrix) const { |
| CHECK(is_computed_) |
| << "Covariance::GetCovarianceMatrix called before Covariance::Compute"; |
| CHECK(is_valid_) |
| << "Covariance::GetCovarianceMatrix called when Covariance::Compute " |
| << "returned false."; |
| |
| const ProblemImpl::ParameterMap& parameter_map = problem_->parameter_map(); |
| // For OpenMP compatibility we need to define these vectors in advance |
| const int num_parameters = parameters.size(); |
| vector<int> parameter_sizes; |
| vector<int> cum_parameter_size; |
| parameter_sizes.reserve(num_parameters); |
| cum_parameter_size.resize(num_parameters + 1); |
| cum_parameter_size[0] = 0; |
| for (int i = 0; i < num_parameters; ++i) { |
| ParameterBlock* block = |
| FindOrDie(parameter_map, const_cast<double*>(parameters[i])); |
| if (lift_covariance_to_ambient_space) { |
| parameter_sizes.push_back(block->Size()); |
| } else { |
| parameter_sizes.push_back(block->LocalSize()); |
| } |
| } |
| std::partial_sum(parameter_sizes.begin(), parameter_sizes.end(), |
| cum_parameter_size.begin() + 1); |
| const int max_covariance_block_size = |
| *std::max_element(parameter_sizes.begin(), parameter_sizes.end()); |
| const int covariance_size = cum_parameter_size.back(); |
| |
| // Assemble the blocks in the covariance matrix. |
| MatrixRef covariance(covariance_matrix, covariance_size, covariance_size); |
| const int num_threads = options_.num_threads; |
| std::unique_ptr<double[]> workspace( |
| new double[num_threads * max_covariance_block_size * |
| max_covariance_block_size]); |
| |
| bool success = true; |
| |
| // Technically the following code is a double nested loop where |
| // i = 1:n, j = i:n. |
| int iteration_count = (num_parameters * (num_parameters + 1)) / 2; |
| problem_->context()->EnsureMinimumThreads(num_threads); |
| ParallelFor( |
| problem_->context(), |
| 0, |
| iteration_count, |
| num_threads, |
| [&](int thread_id, int k) { |
| int i, j; |
| LinearIndexToUpperTriangularIndex(k, num_parameters, &i, &j); |
| |
| int covariance_row_idx = cum_parameter_size[i]; |
| int covariance_col_idx = cum_parameter_size[j]; |
| int size_i = parameter_sizes[i]; |
| int size_j = parameter_sizes[j]; |
| double* covariance_block = |
| workspace.get() + thread_id * max_covariance_block_size * |
| max_covariance_block_size; |
| if (!GetCovarianceBlockInTangentOrAmbientSpace( |
| parameters[i], parameters[j], |
| lift_covariance_to_ambient_space, covariance_block)) { |
| success = false; |
| } |
| |
| covariance.block(covariance_row_idx, covariance_col_idx, size_i, |
| size_j) = MatrixRef(covariance_block, size_i, size_j); |
| |
| if (i != j) { |
| covariance.block(covariance_col_idx, covariance_row_idx, |
| size_j, size_i) = |
| MatrixRef(covariance_block, size_i, size_j).transpose(); |
| } |
| }); |
| return success; |
| } |
| |
| // Determine the sparsity pattern of the covariance matrix based on |
| // the block pairs requested by the user. |
| bool CovarianceImpl::ComputeCovarianceSparsity( |
| const CovarianceBlocks& original_covariance_blocks, |
| ProblemImpl* problem) { |
| EventLogger event_logger("CovarianceImpl::ComputeCovarianceSparsity"); |
| |
| // Determine an ordering for the parameter block, by sorting the |
| // parameter blocks by their pointers. |
| vector<double*> all_parameter_blocks; |
| problem->GetParameterBlocks(&all_parameter_blocks); |
| const ProblemImpl::ParameterMap& parameter_map = problem->parameter_map(); |
| std::unordered_set<ParameterBlock*> parameter_blocks_in_use; |
| vector<ResidualBlock*> residual_blocks; |
| problem->GetResidualBlocks(&residual_blocks); |
| |
| for (int i = 0; i < residual_blocks.size(); ++i) { |
| ResidualBlock* residual_block = residual_blocks[i]; |
| parameter_blocks_in_use.insert(residual_block->parameter_blocks(), |
| residual_block->parameter_blocks() + |
| residual_block->NumParameterBlocks()); |
| } |
| |
| constant_parameter_blocks_.clear(); |
| vector<double*>& active_parameter_blocks = |
| evaluate_options_.parameter_blocks; |
| active_parameter_blocks.clear(); |
| for (int i = 0; i < all_parameter_blocks.size(); ++i) { |
| double* parameter_block = all_parameter_blocks[i]; |
| ParameterBlock* block = FindOrDie(parameter_map, parameter_block); |
| if (!block->IsConstant() && (parameter_blocks_in_use.count(block) > 0)) { |
| active_parameter_blocks.push_back(parameter_block); |
| } else { |
| constant_parameter_blocks_.insert(parameter_block); |
| } |
| } |
| |
| std::sort(active_parameter_blocks.begin(), active_parameter_blocks.end()); |
| |
| // Compute the number of rows. Map each parameter block to the |
| // first row corresponding to it in the covariance matrix using the |
| // ordering of parameter blocks just constructed. |
| int num_rows = 0; |
| parameter_block_to_row_index_.clear(); |
| for (int i = 0; i < active_parameter_blocks.size(); ++i) { |
| double* parameter_block = active_parameter_blocks[i]; |
| const int parameter_block_size = |
| problem->ParameterBlockLocalSize(parameter_block); |
| parameter_block_to_row_index_[parameter_block] = num_rows; |
| num_rows += parameter_block_size; |
| } |
| |
| // Compute the number of non-zeros in the covariance matrix. Along |
| // the way flip any covariance blocks which are in the lower |
| // triangular part of the matrix. |
| int num_nonzeros = 0; |
| CovarianceBlocks covariance_blocks; |
| for (int i = 0; i < original_covariance_blocks.size(); ++i) { |
| const pair<const double*, const double*>& block_pair = |
| original_covariance_blocks[i]; |
| if (constant_parameter_blocks_.count(block_pair.first) > 0 || |
| constant_parameter_blocks_.count(block_pair.second) > 0) { |
| continue; |
| } |
| |
| int index1 = FindOrDie(parameter_block_to_row_index_, block_pair.first); |
| int index2 = FindOrDie(parameter_block_to_row_index_, block_pair.second); |
| const int size1 = problem->ParameterBlockLocalSize(block_pair.first); |
| const int size2 = problem->ParameterBlockLocalSize(block_pair.second); |
| num_nonzeros += size1 * size2; |
| |
| // Make sure we are constructing a block upper triangular matrix. |
| if (index1 > index2) { |
| covariance_blocks.push_back(make_pair(block_pair.second, |
| block_pair.first)); |
| } else { |
| covariance_blocks.push_back(block_pair); |
| } |
| } |
| |
| if (covariance_blocks.size() == 0) { |
| VLOG(2) << "No non-zero covariance blocks found"; |
| covariance_matrix_.reset(NULL); |
| return true; |
| } |
| |
| // Sort the block pairs. As a consequence we get the covariance |
| // blocks as they will occur in the CompressedRowSparseMatrix that |
| // will store the covariance. |
| sort(covariance_blocks.begin(), covariance_blocks.end()); |
| |
| // Fill the sparsity pattern of the covariance matrix. |
| covariance_matrix_.reset( |
| new CompressedRowSparseMatrix(num_rows, num_rows, num_nonzeros)); |
| |
| int* rows = covariance_matrix_->mutable_rows(); |
| int* cols = covariance_matrix_->mutable_cols(); |
| |
| // Iterate over parameter blocks and in turn over the rows of the |
| // covariance matrix. For each parameter block, look in the upper |
| // triangular part of the covariance matrix to see if there are any |
| // blocks requested by the user. If this is the case then fill out a |
| // set of compressed rows corresponding to this parameter block. |
| // |
| // The key thing that makes this loop work is the fact that the |
| // row/columns of the covariance matrix are ordered by the pointer |
| // values of the parameter blocks. Thus iterating over the keys of |
| // parameter_block_to_row_index_ corresponds to iterating over the |
| // rows of the covariance matrix in order. |
| int i = 0; // index into covariance_blocks. |
| int cursor = 0; // index into the covariance matrix. |
| for (const auto& entry : parameter_block_to_row_index_) { |
| const double* row_block = entry.first; |
| const int row_block_size = problem->ParameterBlockLocalSize(row_block); |
| int row_begin = entry.second; |
| |
| // Iterate over the covariance blocks contained in this row block |
| // and count the number of columns in this row block. |
| int num_col_blocks = 0; |
| int num_columns = 0; |
| for (int j = i; j < covariance_blocks.size(); ++j, ++num_col_blocks) { |
| const pair<const double*, const double*>& block_pair = |
| covariance_blocks[j]; |
| if (block_pair.first != row_block) { |
| break; |
| } |
| num_columns += problem->ParameterBlockLocalSize(block_pair.second); |
| } |
| |
| // Fill out all the compressed rows for this parameter block. |
| for (int r = 0; r < row_block_size; ++r) { |
| rows[row_begin + r] = cursor; |
| for (int c = 0; c < num_col_blocks; ++c) { |
| const double* col_block = covariance_blocks[i + c].second; |
| const int col_block_size = problem->ParameterBlockLocalSize(col_block); |
| int col_begin = FindOrDie(parameter_block_to_row_index_, col_block); |
| for (int k = 0; k < col_block_size; ++k) { |
| cols[cursor++] = col_begin++; |
| } |
| } |
| } |
| |
| i+= num_col_blocks; |
| } |
| |
| rows[num_rows] = cursor; |
| return true; |
| } |
| |
| bool CovarianceImpl::ComputeCovarianceValues() { |
| if (options_.algorithm_type == DENSE_SVD) { |
| return ComputeCovarianceValuesUsingDenseSVD(); |
| } |
| |
| if (options_.algorithm_type == SPARSE_QR) { |
| if (options_.sparse_linear_algebra_library_type == EIGEN_SPARSE) { |
| return ComputeCovarianceValuesUsingEigenSparseQR(); |
| } |
| |
| if (options_.sparse_linear_algebra_library_type == SUITE_SPARSE) { |
| #if !defined(CERES_NO_SUITESPARSE) |
| return ComputeCovarianceValuesUsingSuiteSparseQR(); |
| #else |
| LOG(ERROR) << "SuiteSparse is required to use the SPARSE_QR algorithm " |
| << "with " |
| << "Covariance::Options::sparse_linear_algebra_library_type " |
| << "= SUITE_SPARSE."; |
| return false; |
| #endif |
| } |
| |
| LOG(ERROR) << "Unsupported " |
| << "Covariance::Options::sparse_linear_algebra_library_type " |
| << "= " |
| << SparseLinearAlgebraLibraryTypeToString( |
| options_.sparse_linear_algebra_library_type); |
| return false; |
| } |
| |
| LOG(ERROR) << "Unsupported Covariance::Options::algorithm_type = " |
| << CovarianceAlgorithmTypeToString(options_.algorithm_type); |
| return false; |
| } |
| |
| bool CovarianceImpl::ComputeCovarianceValuesUsingSuiteSparseQR() { |
| EventLogger event_logger( |
| "CovarianceImpl::ComputeCovarianceValuesUsingSparseQR"); |
| |
| #ifndef CERES_NO_SUITESPARSE |
| if (covariance_matrix_.get() == NULL) { |
| // Nothing to do, all zeros covariance matrix. |
| return true; |
| } |
| |
| CRSMatrix jacobian; |
| problem_->Evaluate(evaluate_options_, NULL, NULL, NULL, &jacobian); |
| event_logger.AddEvent("Evaluate"); |
| |
| // Construct a compressed column form of the Jacobian. |
| const int num_rows = jacobian.num_rows; |
| const int num_cols = jacobian.num_cols; |
| const int num_nonzeros = jacobian.values.size(); |
| |
| vector<SuiteSparse_long> transpose_rows(num_cols + 1, 0); |
| vector<SuiteSparse_long> transpose_cols(num_nonzeros, 0); |
| vector<double> transpose_values(num_nonzeros, 0); |
| |
| for (int idx = 0; idx < num_nonzeros; ++idx) { |
| transpose_rows[jacobian.cols[idx] + 1] += 1; |
| } |
| |
| for (int i = 1; i < transpose_rows.size(); ++i) { |
| transpose_rows[i] += transpose_rows[i - 1]; |
| } |
| |
| for (int r = 0; r < num_rows; ++r) { |
| for (int idx = jacobian.rows[r]; idx < jacobian.rows[r + 1]; ++idx) { |
| const int c = jacobian.cols[idx]; |
| const int transpose_idx = transpose_rows[c]; |
| transpose_cols[transpose_idx] = r; |
| transpose_values[transpose_idx] = jacobian.values[idx]; |
| ++transpose_rows[c]; |
| } |
| } |
| |
| for (int i = transpose_rows.size() - 1; i > 0 ; --i) { |
| transpose_rows[i] = transpose_rows[i - 1]; |
| } |
| transpose_rows[0] = 0; |
| |
| cholmod_sparse cholmod_jacobian; |
| cholmod_jacobian.nrow = num_rows; |
| cholmod_jacobian.ncol = num_cols; |
| cholmod_jacobian.nzmax = num_nonzeros; |
| cholmod_jacobian.nz = NULL; |
| cholmod_jacobian.p = reinterpret_cast<void*>(&transpose_rows[0]); |
| cholmod_jacobian.i = reinterpret_cast<void*>(&transpose_cols[0]); |
| cholmod_jacobian.x = reinterpret_cast<void*>(&transpose_values[0]); |
| cholmod_jacobian.z = NULL; |
| cholmod_jacobian.stype = 0; // Matrix is not symmetric. |
| cholmod_jacobian.itype = CHOLMOD_LONG; |
| cholmod_jacobian.xtype = CHOLMOD_REAL; |
| cholmod_jacobian.dtype = CHOLMOD_DOUBLE; |
| cholmod_jacobian.sorted = 1; |
| cholmod_jacobian.packed = 1; |
| |
| cholmod_common cc; |
| cholmod_l_start(&cc); |
| |
| cholmod_sparse* R = NULL; |
| SuiteSparse_long* permutation = NULL; |
| |
| // Compute a Q-less QR factorization of the Jacobian. Since we are |
| // only interested in inverting J'J = R'R, we do not need Q. This |
| // saves memory and gives us R as a permuted compressed column |
| // sparse matrix. |
| // |
| // TODO(sameeragarwal): Currently the symbolic factorization and the |
| // numeric factorization is done at the same time, and this does not |
| // explicitly account for the block column and row structure in the |
| // matrix. When using AMD, we have observed in the past that |
| // computing the ordering with the block matrix is significantly |
| // more efficient, both in runtime as well as the quality of |
| // ordering computed. So, it maybe worth doing that analysis |
| // separately. |
| const SuiteSparse_long rank = |
| SuiteSparseQR<double>(SPQR_ORDERING_BESTAMD, |
| SPQR_DEFAULT_TOL, |
| cholmod_jacobian.ncol, |
| &cholmod_jacobian, |
| &R, |
| &permutation, |
| &cc); |
| event_logger.AddEvent("Numeric Factorization"); |
| if (R == nullptr) { |
| LOG(ERROR) << "Something is wrong. SuiteSparseQR returned R = nullptr."; |
| free(permutation); |
| cholmod_l_finish(&cc); |
| return false; |
| } |
| |
| if (rank < cholmod_jacobian.ncol) { |
| LOG(ERROR) << "Jacobian matrix is rank deficient. " |
| << "Number of columns: " << cholmod_jacobian.ncol |
| << " rank: " << rank; |
| free(permutation); |
| cholmod_l_free_sparse(&R, &cc); |
| cholmod_l_finish(&cc); |
| return false; |
| } |
| |
| vector<int> inverse_permutation(num_cols); |
| if (permutation) { |
| for (SuiteSparse_long i = 0; i < num_cols; ++i) { |
| inverse_permutation[permutation[i]] = i; |
| } |
| } else { |
| for (SuiteSparse_long i = 0; i < num_cols; ++i) { |
| inverse_permutation[i] = i; |
| } |
| } |
| |
| const int* rows = covariance_matrix_->rows(); |
| const int* cols = covariance_matrix_->cols(); |
| double* values = covariance_matrix_->mutable_values(); |
| |
| // The following loop exploits the fact that the i^th column of A^{-1} |
| // is given by the solution to the linear system |
| // |
| // A x = e_i |
| // |
| // where e_i is a vector with e(i) = 1 and all other entries zero. |
| // |
| // Since the covariance matrix is symmetric, the i^th row and column |
| // are equal. |
| const int num_threads = options_.num_threads; |
| std::unique_ptr<double[]> workspace(new double[num_threads * num_cols]); |
| |
| problem_->context()->EnsureMinimumThreads(num_threads); |
| ParallelFor( |
| problem_->context(), |
| 0, |
| num_cols, |
| num_threads, |
| [&](int thread_id, int r) { |
| const int row_begin = rows[r]; |
| const int row_end = rows[r + 1]; |
| if (row_end != row_begin) { |
| double* solution = workspace.get() + thread_id * num_cols; |
| SolveRTRWithSparseRHS<SuiteSparse_long>( |
| num_cols, static_cast<SuiteSparse_long*>(R->i), |
| static_cast<SuiteSparse_long*>(R->p), static_cast<double*>(R->x), |
| inverse_permutation[r], solution); |
| for (int idx = row_begin; idx < row_end; ++idx) { |
| const int c = cols[idx]; |
| values[idx] = solution[inverse_permutation[c]]; |
| } |
| } |
| }); |
| |
| free(permutation); |
| cholmod_l_free_sparse(&R, &cc); |
| cholmod_l_finish(&cc); |
| event_logger.AddEvent("Inversion"); |
| return true; |
| |
| #else // CERES_NO_SUITESPARSE |
| |
| return false; |
| |
| #endif // CERES_NO_SUITESPARSE |
| } |
| |
| bool CovarianceImpl::ComputeCovarianceValuesUsingDenseSVD() { |
| EventLogger event_logger( |
| "CovarianceImpl::ComputeCovarianceValuesUsingDenseSVD"); |
| if (covariance_matrix_.get() == NULL) { |
| // Nothing to do, all zeros covariance matrix. |
| return true; |
| } |
| |
| CRSMatrix jacobian; |
| problem_->Evaluate(evaluate_options_, NULL, NULL, NULL, &jacobian); |
| event_logger.AddEvent("Evaluate"); |
| |
| Matrix dense_jacobian(jacobian.num_rows, jacobian.num_cols); |
| dense_jacobian.setZero(); |
| for (int r = 0; r < jacobian.num_rows; ++r) { |
| for (int idx = jacobian.rows[r]; idx < jacobian.rows[r + 1]; ++idx) { |
| const int c = jacobian.cols[idx]; |
| dense_jacobian(r, c) = jacobian.values[idx]; |
| } |
| } |
| event_logger.AddEvent("ConvertToDenseMatrix"); |
| |
| Eigen::BDCSVD<Matrix> svd(dense_jacobian, |
| Eigen::ComputeThinU | Eigen::ComputeThinV); |
| |
| event_logger.AddEvent("SingularValueDecomposition"); |
| |
| const Vector singular_values = svd.singularValues(); |
| const int num_singular_values = singular_values.rows(); |
| Vector inverse_squared_singular_values(num_singular_values); |
| inverse_squared_singular_values.setZero(); |
| |
| const double max_singular_value = singular_values[0]; |
| const double min_singular_value_ratio = |
| sqrt(options_.min_reciprocal_condition_number); |
| |
| const bool automatic_truncation = (options_.null_space_rank < 0); |
| const int max_rank = std::min(num_singular_values, |
| num_singular_values - options_.null_space_rank); |
| |
| // Compute the squared inverse of the singular values. Truncate the |
| // computation based on min_singular_value_ratio and |
| // null_space_rank. When either of these two quantities are active, |
| // the resulting covariance matrix is a Moore-Penrose inverse |
| // instead of a regular inverse. |
| for (int i = 0; i < max_rank; ++i) { |
| const double singular_value_ratio = singular_values[i] / max_singular_value; |
| if (singular_value_ratio < min_singular_value_ratio) { |
| // Since the singular values are in decreasing order, if |
| // automatic truncation is enabled, then from this point on |
| // all values will fail the ratio test and there is nothing to |
| // do in this loop. |
| if (automatic_truncation) { |
| break; |
| } else { |
| LOG(ERROR) << "Error: Covariance matrix is near rank deficient " |
| << "and the user did not specify a non-zero" |
| << "Covariance::Options::null_space_rank " |
| << "to enable the computation of a Pseudo-Inverse. " |
| << "Reciprocal condition number: " |
| << singular_value_ratio * singular_value_ratio << " " |
| << "min_reciprocal_condition_number: " |
| << options_.min_reciprocal_condition_number; |
| return false; |
| } |
| } |
| |
| inverse_squared_singular_values[i] = |
| 1.0 / (singular_values[i] * singular_values[i]); |
| } |
| |
| Matrix dense_covariance = |
| svd.matrixV() * |
| inverse_squared_singular_values.asDiagonal() * |
| svd.matrixV().transpose(); |
| event_logger.AddEvent("PseudoInverse"); |
| |
| const int num_rows = covariance_matrix_->num_rows(); |
| const int* rows = covariance_matrix_->rows(); |
| const int* cols = covariance_matrix_->cols(); |
| double* values = covariance_matrix_->mutable_values(); |
| |
| for (int r = 0; r < num_rows; ++r) { |
| for (int idx = rows[r]; idx < rows[r + 1]; ++idx) { |
| const int c = cols[idx]; |
| values[idx] = dense_covariance(r, c); |
| } |
| } |
| event_logger.AddEvent("CopyToCovarianceMatrix"); |
| return true; |
| } |
| |
| bool CovarianceImpl::ComputeCovarianceValuesUsingEigenSparseQR() { |
| EventLogger event_logger( |
| "CovarianceImpl::ComputeCovarianceValuesUsingEigenSparseQR"); |
| if (covariance_matrix_.get() == NULL) { |
| // Nothing to do, all zeros covariance matrix. |
| return true; |
| } |
| |
| CRSMatrix jacobian; |
| problem_->Evaluate(evaluate_options_, NULL, NULL, NULL, &jacobian); |
| event_logger.AddEvent("Evaluate"); |
| |
| typedef Eigen::SparseMatrix<double, Eigen::ColMajor> EigenSparseMatrix; |
| |
| // Convert the matrix to column major order as required by SparseQR. |
| EigenSparseMatrix sparse_jacobian = |
| Eigen::MappedSparseMatrix<double, Eigen::RowMajor>( |
| jacobian.num_rows, jacobian.num_cols, |
| static_cast<int>(jacobian.values.size()), |
| jacobian.rows.data(), jacobian.cols.data(), jacobian.values.data()); |
| event_logger.AddEvent("ConvertToSparseMatrix"); |
| |
| Eigen::SparseQR<EigenSparseMatrix, Eigen::COLAMDOrdering<int>> |
| qr_solver(sparse_jacobian); |
| event_logger.AddEvent("QRDecomposition"); |
| |
| if (qr_solver.info() != Eigen::Success) { |
| LOG(ERROR) << "Eigen::SparseQR decomposition failed."; |
| return false; |
| } |
| |
| if (qr_solver.rank() < jacobian.num_cols) { |
| LOG(ERROR) << "Jacobian matrix is rank deficient. " |
| << "Number of columns: " << jacobian.num_cols |
| << " rank: " << qr_solver.rank(); |
| return false; |
| } |
| |
| const int* rows = covariance_matrix_->rows(); |
| const int* cols = covariance_matrix_->cols(); |
| double* values = covariance_matrix_->mutable_values(); |
| |
| // Compute the inverse column permutation used by QR factorization. |
| Eigen::PermutationMatrix<Eigen::Dynamic, Eigen::Dynamic> inverse_permutation = |
| qr_solver.colsPermutation().inverse(); |
| |
| // The following loop exploits the fact that the i^th column of A^{-1} |
| // is given by the solution to the linear system |
| // |
| // A x = e_i |
| // |
| // where e_i is a vector with e(i) = 1 and all other entries zero. |
| // |
| // Since the covariance matrix is symmetric, the i^th row and column |
| // are equal. |
| const int num_cols = jacobian.num_cols; |
| const int num_threads = options_.num_threads; |
| std::unique_ptr<double[]> workspace(new double[num_threads * num_cols]); |
| |
| problem_->context()->EnsureMinimumThreads(num_threads); |
| ParallelFor( |
| problem_->context(), |
| 0, |
| num_cols, |
| num_threads, |
| [&](int thread_id, int r) { |
| const int row_begin = rows[r]; |
| const int row_end = rows[r + 1]; |
| if (row_end != row_begin) { |
| double* solution = workspace.get() + thread_id * num_cols; |
| SolveRTRWithSparseRHS<int>( |
| num_cols, |
| qr_solver.matrixR().innerIndexPtr(), |
| qr_solver.matrixR().outerIndexPtr(), |
| &qr_solver.matrixR().data().value(0), |
| inverse_permutation.indices().coeff(r), |
| solution); |
| |
| // Assign the values of the computed covariance using the |
| // inverse permutation used in the QR factorization. |
| for (int idx = row_begin; idx < row_end; ++idx) { |
| const int c = cols[idx]; |
| values[idx] = solution[inverse_permutation.indices().coeff(c)]; |
| } |
| } |
| }); |
| |
| event_logger.AddEvent("Inverse"); |
| |
| return true; |
| } |
| |
| } // namespace internal |
| } // namespace ceres |