| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2023 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Authors: dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin) | 
 |  | 
 | #include "ceres/cuda_block_sparse_crs_view.h" | 
 |  | 
 | #include <glog/logging.h> | 
 | #include <gtest/gtest.h> | 
 |  | 
 | #include <numeric> | 
 |  | 
 | #ifndef CERES_NO_CUDA | 
 |  | 
 | namespace ceres::internal { | 
 | class CudaBlockSparseCRSViewTest : public ::testing::Test { | 
 |  protected: | 
 |   void SetUp() final { | 
 |     std::string message; | 
 |     CHECK(context_.InitCuda(&message)) | 
 |         << "InitCuda() failed because: " << message; | 
 |  | 
 |     BlockSparseMatrix::RandomMatrixOptions options; | 
 |     options.num_row_blocks = 1234; | 
 |     options.min_row_block_size = 1; | 
 |     options.max_row_block_size = 10; | 
 |     options.num_col_blocks = 567; | 
 |     options.min_col_block_size = 1; | 
 |     options.max_col_block_size = 10; | 
 |     options.block_density = 0.2; | 
 |     std::mt19937 rng; | 
 |  | 
 |     // Block-sparse matrix with order of values different from CRS | 
 |     block_sparse_non_crs_compatible_ = | 
 |         BlockSparseMatrix::CreateRandomMatrix(options, rng, true); | 
 |     std::iota(block_sparse_non_crs_compatible_->mutable_values(), | 
 |               block_sparse_non_crs_compatible_->mutable_values() + | 
 |                   block_sparse_non_crs_compatible_->num_nonzeros(), | 
 |               1); | 
 |  | 
 |     options.max_row_block_size = 1; | 
 |     // Block-sparse matrix with CRS order of values (row-blocks are rows) | 
 |     block_sparse_crs_compatible_rows_ = | 
 |         BlockSparseMatrix::CreateRandomMatrix(options, rng, true); | 
 |     std::iota(block_sparse_crs_compatible_rows_->mutable_values(), | 
 |               block_sparse_crs_compatible_rows_->mutable_values() + | 
 |                   block_sparse_crs_compatible_rows_->num_nonzeros(), | 
 |               1); | 
 |     // Block-sparse matrix with CRS order of values (single cell per row-block) | 
 |     auto bs = std::make_unique<CompressedRowBlockStructure>( | 
 |         *block_sparse_non_crs_compatible_->block_structure()); | 
 |  | 
 |     int num_nonzeros = 0; | 
 |     for (auto& r : bs->rows) { | 
 |       const int num_cells = r.cells.size(); | 
 |       if (num_cells > 1) { | 
 |         std::uniform_int_distribution<int> uniform_cell(0, num_cells - 1); | 
 |         const int selected_cell = uniform_cell(rng); | 
 |         std::swap(r.cells[0], r.cells[selected_cell]); | 
 |         r.cells.resize(1); | 
 |       } | 
 |       const int row_block_size = r.block.size; | 
 |       for (auto& c : r.cells) { | 
 |         c.position = num_nonzeros; | 
 |         const int col_block_size = bs->cols[c.block_id].size; | 
 |         num_nonzeros += col_block_size * row_block_size; | 
 |       } | 
 |     } | 
 |     block_sparse_crs_compatible_single_cell_ = | 
 |         std::make_unique<BlockSparseMatrix>(bs.release()); | 
 |     std::iota(block_sparse_crs_compatible_single_cell_->mutable_values(), | 
 |               block_sparse_crs_compatible_single_cell_->mutable_values() + | 
 |                   block_sparse_crs_compatible_single_cell_->num_nonzeros(), | 
 |               1); | 
 |   } | 
 |  | 
 |   void Compare(const BlockSparseMatrix& bsm, const CudaSparseMatrix& csm) { | 
 |     ASSERT_EQ(csm.num_cols(), bsm.num_cols()); | 
 |     ASSERT_EQ(csm.num_rows(), bsm.num_rows()); | 
 |     ASSERT_EQ(csm.num_nonzeros(), bsm.num_nonzeros()); | 
 |     const int num_rows = bsm.num_rows(); | 
 |     const int num_cols = bsm.num_cols(); | 
 |     Vector x(num_cols); | 
 |     Vector y(num_rows); | 
 |     CudaVector x_cuda(&context_, num_cols); | 
 |     CudaVector y_cuda(&context_, num_rows); | 
 |     Vector y_cuda_host(num_rows); | 
 |  | 
 |     for (int i = 0; i < num_cols; ++i) { | 
 |       x.setZero(); | 
 |       y.setZero(); | 
 |       y_cuda.SetZero(); | 
 |       x[i] = 1.; | 
 |       x_cuda.CopyFromCpu(x); | 
 |       csm.RightMultiplyAndAccumulate(x_cuda, &y_cuda); | 
 |       bsm.RightMultiplyAndAccumulate( | 
 |           x.data(), y.data(), &context_, std::thread::hardware_concurrency()); | 
 |       y_cuda.CopyTo(&y_cuda_host); | 
 |       // There will be up to 1 non-zero product per row, thus we expect an exact | 
 |       // match on 32-bit integer indices | 
 |       EXPECT_EQ((y - y_cuda_host).squaredNorm(), 0.); | 
 |     } | 
 |   } | 
 |  | 
 |   std::unique_ptr<BlockSparseMatrix> block_sparse_non_crs_compatible_; | 
 |   std::unique_ptr<BlockSparseMatrix> block_sparse_crs_compatible_rows_; | 
 |   std::unique_ptr<BlockSparseMatrix> block_sparse_crs_compatible_single_cell_; | 
 |   ContextImpl context_; | 
 | }; | 
 |  | 
 | TEST_F(CudaBlockSparseCRSViewTest, CreateUpdateValuesNonCompatible) { | 
 |   auto view = | 
 |       CudaBlockSparseCRSView(*block_sparse_non_crs_compatible_, &context_); | 
 |   ASSERT_EQ(view.IsCrsCompatible(), false); | 
 |  | 
 |   auto matrix = view.crs_matrix(); | 
 |   Compare(*block_sparse_non_crs_compatible_, *matrix); | 
 | } | 
 |  | 
 | TEST_F(CudaBlockSparseCRSViewTest, CreateUpdateValuesCompatibleRows) { | 
 |   auto view = | 
 |       CudaBlockSparseCRSView(*block_sparse_crs_compatible_rows_, &context_); | 
 |   ASSERT_EQ(view.IsCrsCompatible(), true); | 
 |  | 
 |   auto matrix = view.crs_matrix(); | 
 |   Compare(*block_sparse_crs_compatible_rows_, *matrix); | 
 | } | 
 |  | 
 | TEST_F(CudaBlockSparseCRSViewTest, CreateUpdateValuesCompatibleSingleCell) { | 
 |   auto view = CudaBlockSparseCRSView(*block_sparse_crs_compatible_single_cell_, | 
 |                                      &context_); | 
 |   ASSERT_EQ(view.IsCrsCompatible(), true); | 
 |  | 
 |   auto matrix = view.crs_matrix(); | 
 |   Compare(*block_sparse_crs_compatible_single_cell_, *matrix); | 
 | } | 
 | }  // namespace ceres::internal | 
 |  | 
 | #endif  // CERES_NO_CUDA |