| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2023 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: joydeepb@cs.utexas.edu (Joydeep Biswas) | 
 |  | 
 | #include "ceres/cuda_sparse_matrix.h" | 
 |  | 
 | #include <string> | 
 |  | 
 | #include "ceres/block_sparse_matrix.h" | 
 | #include "ceres/casts.h" | 
 | #include "ceres/cuda_vector.h" | 
 | #include "ceres/internal/config.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/linear_least_squares_problems.h" | 
 | #include "ceres/triplet_sparse_matrix.h" | 
 | #include "glog/logging.h" | 
 | #include "gtest/gtest.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | #ifndef CERES_NO_CUDA | 
 |  | 
 | class CudaSparseMatrixTest : public ::testing::Test { | 
 |  protected: | 
 |   void SetUp() final { | 
 |     std::string message; | 
 |     CHECK(context_.InitCuda(&message)) | 
 |         << "InitCuda() failed because: " << message; | 
 |     std::unique_ptr<LinearLeastSquaresProblem> problem = | 
 |         CreateLinearLeastSquaresProblemFromId(2); | 
 |     CHECK(problem != nullptr); | 
 |     A_.reset(down_cast<BlockSparseMatrix*>(problem->A.release())); | 
 |     CHECK(A_ != nullptr); | 
 |     CHECK(problem->b != nullptr); | 
 |     CHECK(problem->x != nullptr); | 
 |     b_.resize(A_->num_rows()); | 
 |     for (int i = 0; i < A_->num_rows(); ++i) { | 
 |       b_[i] = problem->b[i]; | 
 |     } | 
 |     x_.resize(A_->num_cols()); | 
 |     for (int i = 0; i < A_->num_cols(); ++i) { | 
 |       x_[i] = problem->x[i]; | 
 |     } | 
 |     CHECK_EQ(A_->num_rows(), b_.rows()); | 
 |     CHECK_EQ(A_->num_cols(), x_.rows()); | 
 |   } | 
 |  | 
 |   std::unique_ptr<BlockSparseMatrix> A_; | 
 |   Vector x_; | 
 |   Vector b_; | 
 |   ContextImpl context_; | 
 | }; | 
 |  | 
 | TEST_F(CudaSparseMatrixTest, RightMultiplyAndAccumulate) { | 
 |   std::string message; | 
 |   auto A_crs = A_->ToCompressedRowSparseMatrix(); | 
 |   CudaSparseMatrix A_gpu(&context_, *A_crs); | 
 |   CudaVector x_gpu(&context_, A_gpu.num_cols()); | 
 |   CudaVector res_gpu(&context_, A_gpu.num_rows()); | 
 |   x_gpu.CopyFromCpu(x_); | 
 |  | 
 |   const Vector minus_b = -b_; | 
 |   // res = -b | 
 |   res_gpu.CopyFromCpu(minus_b); | 
 |   // res += A * x | 
 |   A_gpu.RightMultiplyAndAccumulate(x_gpu, &res_gpu); | 
 |  | 
 |   Vector res; | 
 |   res_gpu.CopyTo(&res); | 
 |  | 
 |   Vector res_expected = minus_b; | 
 |   A_->RightMultiplyAndAccumulate(x_.data(), res_expected.data()); | 
 |  | 
 |   EXPECT_LE((res - res_expected).norm(), | 
 |             std::numeric_limits<double>::epsilon() * 1e3); | 
 | } | 
 |  | 
 | TEST(CudaSparseMatrix, CopyValuesFromCpu) { | 
 |   // A1: | 
 |   // [ 1 1 0 0 | 
 |   //   0 1 1 0] | 
 |   // A2: | 
 |   // [ 1 2 0 0 | 
 |   //   0 3 4 0] | 
 |   // b: [1 2 3 4]' | 
 |   // A1 * b = [3 5]' | 
 |   // A2 * b = [5 18]' | 
 |   TripletSparseMatrix A1(2, 4, {0, 0, 1, 1}, {0, 1, 1, 2}, {1, 1, 1, 1}); | 
 |   TripletSparseMatrix A2(2, 4, {0, 0, 1, 1}, {0, 1, 1, 2}, {1, 2, 3, 4}); | 
 |   Vector b(4); | 
 |   b << 1, 2, 3, 4; | 
 |  | 
 |   ContextImpl context; | 
 |   std::string message; | 
 |   CHECK(context.InitCuda(&message)) << "InitCuda() failed because: " << message; | 
 |   auto A1_crs = CompressedRowSparseMatrix::FromTripletSparseMatrix(A1); | 
 |   CudaSparseMatrix A_gpu(&context, *A1_crs); | 
 |   CudaVector b_gpu(&context, A1.num_cols()); | 
 |   CudaVector x_gpu(&context, A1.num_rows()); | 
 |   b_gpu.CopyFromCpu(b); | 
 |   x_gpu.SetZero(); | 
 |  | 
 |   Vector x_expected(2); | 
 |   x_expected << 3, 5; | 
 |   A_gpu.RightMultiplyAndAccumulate(b_gpu, &x_gpu); | 
 |   Vector x_computed; | 
 |   x_gpu.CopyTo(&x_computed); | 
 |   EXPECT_EQ(x_computed, x_expected); | 
 |  | 
 |   auto A2_crs = CompressedRowSparseMatrix::FromTripletSparseMatrix(A2); | 
 |   A_gpu.CopyValuesFromCpu(*A2_crs); | 
 |   x_gpu.SetZero(); | 
 |   x_expected << 5, 18; | 
 |   A_gpu.RightMultiplyAndAccumulate(b_gpu, &x_gpu); | 
 |   x_gpu.CopyTo(&x_computed); | 
 |   EXPECT_EQ(x_computed, x_expected); | 
 | } | 
 |  | 
 | TEST(CudaSparseMatrix, RightMultiplyAndAccumulate) { | 
 |   // A: | 
 |   // [ 1 2 0 0 | 
 |   //   0 3 4 0] | 
 |   // b: [1 2 3 4]' | 
 |   // A * b = [5 18]' | 
 |   TripletSparseMatrix A(2, 4, {0, 0, 1, 1}, {0, 1, 1, 2}, {1, 2, 3, 4}); | 
 |   Vector b(4); | 
 |   b << 1, 2, 3, 4; | 
 |   Vector x_expected(2); | 
 |   x_expected << 5, 18; | 
 |  | 
 |   ContextImpl context; | 
 |   std::string message; | 
 |   CHECK(context.InitCuda(&message)) << "InitCuda() failed because: " << message; | 
 |   auto A_crs = CompressedRowSparseMatrix::FromTripletSparseMatrix(A); | 
 |   CudaSparseMatrix A_gpu(&context, *A_crs); | 
 |   CudaVector b_gpu(&context, A.num_cols()); | 
 |   CudaVector x_gpu(&context, A.num_rows()); | 
 |   b_gpu.CopyFromCpu(b); | 
 |   x_gpu.SetZero(); | 
 |  | 
 |   A_gpu.RightMultiplyAndAccumulate(b_gpu, &x_gpu); | 
 |  | 
 |   Vector x_computed; | 
 |   x_gpu.CopyTo(&x_computed); | 
 |  | 
 |   EXPECT_EQ(x_computed, x_expected); | 
 | } | 
 |  | 
 | TEST(CudaSparseMatrix, LeftMultiplyAndAccumulate) { | 
 |   // A: | 
 |   // [ 1 2 0 0 | 
 |   //   0 3 4 0] | 
 |   // b: [1 2]' | 
 |   // A'* b = [1 8 8 0]' | 
 |   TripletSparseMatrix A(2, 4, {0, 0, 1, 1}, {0, 1, 1, 2}, {1, 2, 3, 4}); | 
 |   Vector b(2); | 
 |   b << 1, 2; | 
 |   Vector x_expected(4); | 
 |   x_expected << 1, 8, 8, 0; | 
 |  | 
 |   ContextImpl context; | 
 |   std::string message; | 
 |   CHECK(context.InitCuda(&message)) << "InitCuda() failed because: " << message; | 
 |   auto A_crs = CompressedRowSparseMatrix::FromTripletSparseMatrix(A); | 
 |   CudaSparseMatrix A_gpu(&context, *A_crs); | 
 |   CudaVector b_gpu(&context, A.num_rows()); | 
 |   CudaVector x_gpu(&context, A.num_cols()); | 
 |   b_gpu.CopyFromCpu(b); | 
 |   x_gpu.SetZero(); | 
 |  | 
 |   A_gpu.LeftMultiplyAndAccumulate(b_gpu, &x_gpu); | 
 |  | 
 |   Vector x_computed; | 
 |   x_gpu.CopyTo(&x_computed); | 
 |  | 
 |   EXPECT_EQ(x_computed, x_expected); | 
 | } | 
 |  | 
 | // If there are numerical errors due to synchronization issues, they will show | 
 | // up when testing with large matrices, since each operation will take | 
 | // significant time, thus hopefully revealing any potential synchronization | 
 | // issues. | 
 | TEST(CudaSparseMatrix, LargeMultiplyAndAccumulate) { | 
 |   // Create a large NxN matrix A that has the following structure: | 
 |   // In row i, only columns i and i+1 are non-zero. | 
 |   // A_{i, i} = A_{i, i+1} = 1. | 
 |   // There will be 2 * N - 1 non-zero elements in A. | 
 |   // X = [1:N] | 
 |   // Right multiply test: | 
 |   // b = A * X | 
 |   // Left multiply test: | 
 |   // b = A' * X | 
 |  | 
 |   const int N = 10 * 1000 * 1000; | 
 |   const int num_non_zeros = 2 * N - 1; | 
 |   std::vector<int> row_indices(num_non_zeros); | 
 |   std::vector<int> col_indices(num_non_zeros); | 
 |   std::vector<double> values(num_non_zeros); | 
 |  | 
 |   for (int i = 0; i < N; ++i) { | 
 |     row_indices[2 * i] = i; | 
 |     col_indices[2 * i] = i; | 
 |     values[2 * i] = 1.0; | 
 |     if (i + 1 < N) { | 
 |       col_indices[2 * i + 1] = i + 1; | 
 |       row_indices[2 * i + 1] = i; | 
 |       values[2 * i + 1] = 1; | 
 |     } | 
 |   } | 
 |   TripletSparseMatrix A(N, N, row_indices, col_indices, values); | 
 |   Vector x(N); | 
 |   for (int i = 0; i < N; ++i) { | 
 |     x[i] = i + 1; | 
 |   } | 
 |  | 
 |   ContextImpl context; | 
 |   std::string message; | 
 |   CHECK(context.InitCuda(&message)) << "InitCuda() failed because: " << message; | 
 |   auto A_crs = CompressedRowSparseMatrix::FromTripletSparseMatrix(A); | 
 |   CudaSparseMatrix A_gpu(&context, *A_crs); | 
 |   CudaVector b_gpu(&context, N); | 
 |   CudaVector x_gpu(&context, N); | 
 |   x_gpu.CopyFromCpu(x); | 
 |  | 
 |   // First check RightMultiply. | 
 |   { | 
 |     b_gpu.SetZero(); | 
 |     A_gpu.RightMultiplyAndAccumulate(x_gpu, &b_gpu); | 
 |     Vector b_computed; | 
 |     b_gpu.CopyTo(&b_computed); | 
 |     for (int i = 0; i < N; ++i) { | 
 |       if (i + 1 < N) { | 
 |         EXPECT_EQ(b_computed[i], 2 * (i + 1) + 1); | 
 |       } else { | 
 |         EXPECT_EQ(b_computed[i], i + 1); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Next check LeftMultiply. | 
 |   { | 
 |     b_gpu.SetZero(); | 
 |     A_gpu.LeftMultiplyAndAccumulate(x_gpu, &b_gpu); | 
 |     Vector b_computed; | 
 |     b_gpu.CopyTo(&b_computed); | 
 |     for (int i = 0; i < N; ++i) { | 
 |       if (i > 0) { | 
 |         EXPECT_EQ(b_computed[i], 2 * (i + 1) - 1); | 
 |       } else { | 
 |         EXPECT_EQ(b_computed[i], i + 1); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | #endif  // CERES_NO_CUDA | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |