| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2023 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #ifndef CERES_INTERNAL_EIGEN_VECTOR_OPS_H_ | 
 | #define CERES_INTERNAL_EIGEN_VECTOR_OPS_H_ | 
 |  | 
 | #include <numeric> | 
 |  | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/internal/fixed_array.h" | 
 | #include "ceres/parallel_for.h" | 
 | #include "ceres/parallel_vector_ops.h" | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | // Blas1 operations on Eigen vectors. These functions are needed as an | 
 | // abstraction layer so that we can use different versions of a vector style | 
 | // object in the conjugate gradients linear solver. | 
 | template <typename Derived> | 
 | inline double Norm(const Eigen::DenseBase<Derived>& x, | 
 |                    ContextImpl* context, | 
 |                    int num_threads) { | 
 |   FixedArray<double> norms(num_threads, 0.); | 
 |   ParallelFor( | 
 |       context, | 
 |       0, | 
 |       x.rows(), | 
 |       num_threads, | 
 |       [&x, &norms](int thread_id, std::tuple<int, int> range) { | 
 |         auto [start, end] = range; | 
 |         norms[thread_id] += x.segment(start, end - start).squaredNorm(); | 
 |       }, | 
 |       kMinBlockSizeParallelVectorOps); | 
 |   return std::sqrt(std::accumulate(norms.begin(), norms.end(), 0.)); | 
 | } | 
 | inline void SetZero(Vector& x, ContextImpl* context, int num_threads) { | 
 |   ParallelSetZero(context, num_threads, x); | 
 | } | 
 | inline void Axpby(double a, | 
 |                   const Vector& x, | 
 |                   double b, | 
 |                   const Vector& y, | 
 |                   Vector& z, | 
 |                   ContextImpl* context, | 
 |                   int num_threads) { | 
 |   ParallelAssign(context, num_threads, z, a * x + b * y); | 
 | } | 
 | template <typename VectorLikeX, typename VectorLikeY> | 
 | inline double Dot(const VectorLikeX& x, | 
 |                   const VectorLikeY& y, | 
 |                   ContextImpl* context, | 
 |                   int num_threads) { | 
 |   FixedArray<double> dots(num_threads, 0.); | 
 |   ParallelFor( | 
 |       context, | 
 |       0, | 
 |       x.rows(), | 
 |       num_threads, | 
 |       [&x, &y, &dots](int thread_id, std::tuple<int, int> range) { | 
 |         auto [start, end] = range; | 
 |         const int block_size = end - start; | 
 |         const auto& x_block = x.segment(start, block_size); | 
 |         const auto& y_block = y.segment(start, block_size); | 
 |         dots[thread_id] += x_block.dot(y_block); | 
 |       }, | 
 |       kMinBlockSizeParallelVectorOps); | 
 |   return std::accumulate(dots.begin(), dots.end(), 0.); | 
 | } | 
 | inline void Copy(const Vector& from, | 
 |                  Vector& to, | 
 |                  ContextImpl* context, | 
 |                  int num_threads) { | 
 |   ParallelAssign(context, num_threads, to, from); | 
 | } | 
 |  | 
 | }  // namespace ceres::internal | 
 |  | 
 | #endif  // CERES_INTERNAL_EIGEN_VECTOR_OPS_H_ |