NIST/ITL StRD | |
Dataset Name: MGH09 (MGH09.dat) | |
File Format: ASCII | |
Starting Values (lines 41 to 44) | |
Certified Values (lines 41 to 49) | |
Data (lines 61 to 71) | |
Procedure: Nonlinear Least Squares Regression | |
Description: This problem was found to be difficult for some very | |
good algorithms. There is a local minimum at (+inf, | |
-14.07..., -inf, -inf) with final sum of squares | |
0.00102734.... | |
See More, J. J., Garbow, B. S., and Hillstrom, K. E. | |
(1981). Testing unconstrained optimization software. | |
ACM Transactions on Mathematical Software. 7(1): | |
pp. 17-41. | |
Reference: Kowalik, J.S., and M. R. Osborne, (1978). | |
Methods for Unconstrained Optimization Problems. | |
New York, NY: Elsevier North-Holland. | |
Data: 1 Response (y) | |
1 Predictor (x) | |
11 Observations | |
Higher Level of Difficulty | |
Generated Data | |
Model: Rational Class (linear/quadratic) | |
4 Parameters (b1 to b4) | |
y = b1*(x**2+x*b2) / (x**2+x*b3+b4) + e | |
Starting values Certified Values | |
Start 1 Start 2 Parameter Standard Deviation | |
b1 = 25 0.25 1.9280693458E-01 1.1435312227E-02 | |
b2 = 39 0.39 1.9128232873E-01 1.9633220911E-01 | |
b3 = 41.5 0.415 1.2305650693E-01 8.0842031232E-02 | |
b4 = 39 0.39 1.3606233068E-01 9.0025542308E-02 | |
Residual Sum of Squares: 3.0750560385E-04 | |
Residual Standard Deviation: 6.6279236551E-03 | |
Degrees of Freedom: 7 | |
Number of Observations: 11 | |
Data: y x | |
1.957000E-01 4.000000E+00 | |
1.947000E-01 2.000000E+00 | |
1.735000E-01 1.000000E+00 | |
1.600000E-01 5.000000E-01 | |
8.440000E-02 2.500000E-01 | |
6.270000E-02 1.670000E-01 | |
4.560000E-02 1.250000E-01 | |
3.420000E-02 1.000000E-01 | |
3.230000E-02 8.330000E-02 | |
2.350000E-02 7.140000E-02 | |
2.460000E-02 6.250000E-02 |