| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2015 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/dense_normal_cholesky_solver.h" |
| |
| #include <cstddef> |
| |
| #include "Eigen/Dense" |
| #include "ceres/blas.h" |
| #include "ceres/dense_sparse_matrix.h" |
| #include "ceres/internal/eigen.h" |
| #include "ceres/lapack.h" |
| #include "ceres/linear_solver.h" |
| #include "ceres/types.h" |
| #include "ceres/wall_time.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| DenseNormalCholeskySolver::DenseNormalCholeskySolver( |
| const LinearSolver::Options& options) |
| : options_(options) {} |
| |
| LinearSolver::Summary DenseNormalCholeskySolver::SolveImpl( |
| DenseSparseMatrix* A, |
| const double* b, |
| const LinearSolver::PerSolveOptions& per_solve_options, |
| double* x) { |
| if (options_.dense_linear_algebra_library_type == EIGEN) { |
| return SolveUsingEigen(A, b, per_solve_options, x); |
| } else { |
| return SolveUsingLAPACK(A, b, per_solve_options, x); |
| } |
| } |
| |
| LinearSolver::Summary DenseNormalCholeskySolver::SolveUsingEigen( |
| DenseSparseMatrix* A, |
| const double* b, |
| const LinearSolver::PerSolveOptions& per_solve_options, |
| double* x) { |
| EventLogger event_logger("DenseNormalCholeskySolver::Solve"); |
| |
| const int num_rows = A->num_rows(); |
| const int num_cols = A->num_cols(); |
| |
| ConstColMajorMatrixRef Aref = A->matrix(); |
| Matrix lhs(num_cols, num_cols); |
| lhs.setZero(); |
| |
| event_logger.AddEvent("Setup"); |
| |
| // lhs += A'A |
| // |
| // Using rankUpdate instead of GEMM, exposes the fact that its the |
| // same matrix being multiplied with itself and that the product is |
| // symmetric. |
| lhs.selfadjointView<Eigen::Upper>().rankUpdate(Aref.transpose()); |
| |
| // rhs = A'b |
| Vector rhs = Aref.transpose() * ConstVectorRef(b, num_rows); |
| |
| if (per_solve_options.D != NULL) { |
| ConstVectorRef D(per_solve_options.D, num_cols); |
| lhs += D.array().square().matrix().asDiagonal(); |
| } |
| event_logger.AddEvent("Product"); |
| |
| LinearSolver::Summary summary; |
| summary.num_iterations = 1; |
| summary.termination_type = LINEAR_SOLVER_SUCCESS; |
| Eigen::LLT<Matrix, Eigen::Upper> llt = |
| lhs.selfadjointView<Eigen::Upper>().llt(); |
| |
| if (llt.info() != Eigen::Success) { |
| summary.termination_type = LINEAR_SOLVER_FAILURE; |
| summary.message = "Eigen LLT decomposition failed."; |
| } else { |
| summary.termination_type = LINEAR_SOLVER_SUCCESS; |
| summary.message = "Success."; |
| } |
| |
| VectorRef(x, num_cols) = llt.solve(rhs); |
| event_logger.AddEvent("Solve"); |
| return summary; |
| } |
| |
| LinearSolver::Summary DenseNormalCholeskySolver::SolveUsingLAPACK( |
| DenseSparseMatrix* A, |
| const double* b, |
| const LinearSolver::PerSolveOptions& per_solve_options, |
| double* x) { |
| EventLogger event_logger("DenseNormalCholeskySolver::Solve"); |
| |
| if (per_solve_options.D != NULL) { |
| // Temporarily append a diagonal block to the A matrix, but undo |
| // it before returning the matrix to the user. |
| A->AppendDiagonal(per_solve_options.D); |
| } |
| |
| const int num_cols = A->num_cols(); |
| Matrix lhs(num_cols, num_cols); |
| event_logger.AddEvent("Setup"); |
| |
| // lhs = A'A |
| // |
| // Note: This is a bit delicate, it assumes that the stride on this |
| // matrix is the same as the number of rows. |
| BLAS::SymmetricRankKUpdate(A->num_rows(), |
| num_cols, |
| A->values(), |
| true, |
| 1.0, |
| 0.0, |
| lhs.data()); |
| |
| if (per_solve_options.D != NULL) { |
| // Undo the modifications to the matrix A. |
| A->RemoveDiagonal(); |
| } |
| |
| // TODO(sameeragarwal): Replace this with a gemv call for true blasness. |
| // rhs = A'b |
| VectorRef(x, num_cols) = |
| A->matrix().transpose() * ConstVectorRef(b, A->num_rows()); |
| event_logger.AddEvent("Product"); |
| |
| LinearSolver::Summary summary; |
| summary.num_iterations = 1; |
| summary.termination_type = |
| LAPACK::SolveInPlaceUsingCholesky(num_cols, |
| lhs.data(), |
| x, |
| &summary.message); |
| event_logger.AddEvent("Solve"); |
| return summary; |
| } |
| } // namespace internal |
| } // namespace ceres |