blob: 8544e44d0bc1e7b294e35d73aeb5f0eedf458257 [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
//
// Create CostFunctions as needed by the least squares framework with jacobians
// computed via numeric (a.k.a. finite) differentiation. For more details see
// http://en.wikipedia.org/wiki/Numerical_differentiation.
//
// To get a numerically differentiated cost function, define a subclass of
// CostFunction such that the Evaluate() function ignores the jacobian
// parameter. The numeric differentiation wrapper will fill in the jacobian
// parameter if nececssary by repeatedly calling the Evaluate() function with
// small changes to the appropriate parameters, and computing the slope. For
// performance, the numeric differentiation wrapper class is templated on the
// concrete cost function, even though it could be implemented only in terms of
// the virtual CostFunction interface.
//
// The numerically differentiated version of a cost function for a cost function
// can be constructed as follows:
//
// CostFunction* cost_function
// = new NumericDiffCostFunction<MyCostFunction, CENTRAL, 1, 4, 8>(
// new MyCostFunction(...), TAKE_OWNERSHIP);
//
// where MyCostFunction has 1 residual and 2 parameter blocks with sizes 4 and 8
// respectively. Look at the tests for a more detailed example.
//
// The central difference method is considerably more accurate at the cost of
// twice as many function evaluations than forward difference. Consider using
// central differences begin with, and only after that works, trying forward
// difference to improve performance.
//
// TODO(keir): Characterize accuracy; mention pitfalls; provide alternatives.
#ifndef CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_
#define CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_
#include <cstring>
#include <glog/logging.h>
#include "Eigen/Dense"
#include "ceres/internal/scoped_ptr.h"
#include "ceres/sized_cost_function.h"
#include "ceres/types.h"
namespace ceres {
enum NumericDiffMethod {
CENTRAL,
FORWARD
};
// This is split from the main class because C++ doesn't allow partial template
// specializations for member functions. The alternative is to repeat the main
// class for differing numbers of parameters, which is also unfortunate.
template <typename CostFunctionNoJacobian,
int num_residuals,
int parameter_block_size,
int parameter_block,
NumericDiffMethod method>
struct Differencer {
// Mutates parameters but must restore them before return.
static bool EvaluateJacobianForParameterBlock(
const CostFunctionNoJacobian *function,
double const* residuals_at_eval_point,
double **parameters,
double **jacobians) {
using Eigen::Map;
using Eigen::Matrix;
using Eigen::RowMajor;
using Eigen::ColMajor;
typedef Matrix<double, num_residuals, 1> ResidualVector;
typedef Matrix<double, parameter_block_size, 1> ParameterVector;
typedef Matrix<double, num_residuals, parameter_block_size,
(parameter_block_size == 1 &&
num_residuals > 1) ? ColMajor : RowMajor> JacobianMatrix;
Map<JacobianMatrix> parameter_jacobian(jacobians[parameter_block],
num_residuals,
parameter_block_size);
// Mutate 1 element at a time and then restore.
Map<ParameterVector> x_plus_delta(parameters[parameter_block],
parameter_block_size);
ParameterVector x(x_plus_delta);
// TODO(keir): Pick a smarter number! In theory a good choice is sqrt(eps) *
// x, which for doubles means about 1e-8 * x. However, I have found this
// number too optimistic. This number should be exposed for users to change.
const double kRelativeStepSize = 1e-6;
ParameterVector step_size = x.array().abs() * kRelativeStepSize;
// To handle cases where a parameter is exactly zero, instead use the mean
// step_size for the other dimensions.
double fallback_step_size = step_size.sum() / step_size.rows();
if (fallback_step_size == 0.0) {
// If all the parameters are zero, there's no good answer. Take
// kRelativeStepSize as a guess and hope for the best.
fallback_step_size = kRelativeStepSize;
}
// For each parameter in the parameter block, use finite differences to
// compute the derivative for that parameter.
for (int j = 0; j < parameter_block_size; ++j) {
if (step_size(j) == 0.0) {
// The parameter is exactly zero, so compromise and use the mean
// step_size from the other parameters. This can break in many cases,
// but it's hard to pick a good number without problem specific
// knowledge.
step_size(j) = fallback_step_size;
}
x_plus_delta(j) = x(j) + step_size(j);
double residuals[num_residuals]; // NOLINT
if (!function->Evaluate(parameters, residuals, NULL)) {
// Something went wrong; bail.
return false;
}
// Compute this column of the jacobian in 3 steps:
// 1. Store residuals for the forward part.
// 2. Subtract residuals for the backward (or 0) part.
// 3. Divide out the run.
parameter_jacobian.col(j) =
Map<const ResidualVector>(residuals, num_residuals);
double one_over_h = 1 / step_size(j);
if (method == CENTRAL) {
// Compute the function on the other side of x(j).
x_plus_delta(j) = x(j) - step_size(j);
if (!function->Evaluate(parameters, residuals, NULL)) {
// Something went wrong; bail.
return false;
}
parameter_jacobian.col(j) -=
Map<ResidualVector>(residuals, num_residuals, 1);
one_over_h /= 2;
} else {
// Forward difference only; reuse existing residuals evaluation.
parameter_jacobian.col(j) -=
Map<const ResidualVector>(residuals_at_eval_point, num_residuals);
}
x_plus_delta(j) = x(j); // Restore x_plus_delta.
// Divide out the run to get slope.
parameter_jacobian.col(j) *= one_over_h;
}
return true;
}
};
// Prevent invalid instantiations.
template <typename CostFunctionNoJacobian,
int num_residuals,
int parameter_block,
NumericDiffMethod method>
struct Differencer<CostFunctionNoJacobian,
num_residuals,
0 /* parameter_block_size */,
parameter_block,
method> {
static bool EvaluateJacobianForParameterBlock(
const CostFunctionNoJacobian *function,
double const* residuals_at_eval_point,
double **parameters,
double **jacobians) {
LOG(FATAL) << "Shouldn't get here.";
return true;
}
};
template <typename CostFunctionNoJacobian,
NumericDiffMethod method = CENTRAL, int M = 0,
int N0 = 0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0, int N5 = 0>
class NumericDiffCostFunction
: public SizedCostFunction<M, N0, N1, N2, N3, N4, N5> {
public:
NumericDiffCostFunction(CostFunctionNoJacobian* function,
Ownership ownership)
: function_(function), ownership_(ownership) {}
virtual ~NumericDiffCostFunction() {
if (ownership_ != TAKE_OWNERSHIP) {
function_.release();
}
}
virtual bool Evaluate(double const* const* parameters,
double* residuals,
double** jacobians) const {
// Get the function value (residuals) at the the point to evaluate.
bool success = function_->Evaluate(parameters, residuals, NULL);
if (!success) {
// Something went wrong; ignore the jacobian.
return false;
}
if (!jacobians) {
// Nothing to do; just forward.
return true;
}
// Create a copy of the parameters which will get mutated.
const int kParametersSize = N0 + N1 + N2 + N3 + N4 + N5;
double parameters_copy[kParametersSize];
double *parameters_references_copy[6];
parameters_references_copy[0] = &parameters_copy[0];
parameters_references_copy[1] = &parameters_copy[0] + N0;
parameters_references_copy[2] = &parameters_copy[0] + N0 + N1;
parameters_references_copy[3] = &parameters_copy[0] + N0 + N1 + N2;
parameters_references_copy[4] = &parameters_copy[0] + N0 + N1 + N2 + N3;
parameters_references_copy[5] =
&parameters_copy[0] + N0 + N1 + N2 + N3 + N4;
#define COPY_PARAMETER_BLOCK(block) \
if (N ## block) memcpy(parameters_references_copy[block], \
parameters[block], \
sizeof(double) * N ## block); // NOLINT
COPY_PARAMETER_BLOCK(0);
COPY_PARAMETER_BLOCK(1);
COPY_PARAMETER_BLOCK(2);
COPY_PARAMETER_BLOCK(3);
COPY_PARAMETER_BLOCK(4);
COPY_PARAMETER_BLOCK(5);
#undef COPY_PARAMETER_BLOCK
#define EVALUATE_JACOBIAN_FOR_BLOCK(block) \
if (N ## block && jacobians[block]) { \
if (!Differencer<CostFunctionNoJacobian, /* NOLINT */ \
M, \
N ## block, \
block, \
method>::EvaluateJacobianForParameterBlock( \
function_.get(), \
residuals, \
parameters_references_copy, \
jacobians)) { \
return false; \
} \
}
EVALUATE_JACOBIAN_FOR_BLOCK(0);
EVALUATE_JACOBIAN_FOR_BLOCK(1);
EVALUATE_JACOBIAN_FOR_BLOCK(2);
EVALUATE_JACOBIAN_FOR_BLOCK(3);
EVALUATE_JACOBIAN_FOR_BLOCK(4);
EVALUATE_JACOBIAN_FOR_BLOCK(5);
#undef EVALUATE_JACOBIAN_FOR_BLOCK
return true;
}
private:
internal::scoped_ptr<CostFunctionNoJacobian> function_;
Ownership ownership_;
};
} // namespace ceres
#endif // CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_