| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| // http://code.google.com/p/ceres-solver/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: keir@google.com (Keir Mierle) |
| // |
| // Create CostFunctions as needed by the least squares framework with jacobians |
| // computed via numeric (a.k.a. finite) differentiation. For more details see |
| // http://en.wikipedia.org/wiki/Numerical_differentiation. |
| // |
| // To get a numerically differentiated cost function, define a subclass of |
| // CostFunction such that the Evaluate() function ignores the jacobian |
| // parameter. The numeric differentiation wrapper will fill in the jacobian |
| // parameter if nececssary by repeatedly calling the Evaluate() function with |
| // small changes to the appropriate parameters, and computing the slope. For |
| // performance, the numeric differentiation wrapper class is templated on the |
| // concrete cost function, even though it could be implemented only in terms of |
| // the virtual CostFunction interface. |
| // |
| // The numerically differentiated version of a cost function for a cost function |
| // can be constructed as follows: |
| // |
| // CostFunction* cost_function |
| // = new NumericDiffCostFunction<MyCostFunction, CENTRAL, 1, 4, 8>( |
| // new MyCostFunction(...), TAKE_OWNERSHIP); |
| // |
| // where MyCostFunction has 1 residual and 2 parameter blocks with sizes 4 and 8 |
| // respectively. Look at the tests for a more detailed example. |
| // |
| // The central difference method is considerably more accurate at the cost of |
| // twice as many function evaluations than forward difference. Consider using |
| // central differences begin with, and only after that works, trying forward |
| // difference to improve performance. |
| // |
| // TODO(keir): Characterize accuracy; mention pitfalls; provide alternatives. |
| |
| #ifndef CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_ |
| #define CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_ |
| |
| #include <cstring> |
| #include <glog/logging.h> |
| #include "Eigen/Dense" |
| #include "ceres/internal/scoped_ptr.h" |
| #include "ceres/sized_cost_function.h" |
| #include "ceres/types.h" |
| |
| namespace ceres { |
| |
| enum NumericDiffMethod { |
| CENTRAL, |
| FORWARD |
| }; |
| |
| // This is split from the main class because C++ doesn't allow partial template |
| // specializations for member functions. The alternative is to repeat the main |
| // class for differing numbers of parameters, which is also unfortunate. |
| template <typename CostFunctionNoJacobian, |
| int num_residuals, |
| int parameter_block_size, |
| int parameter_block, |
| NumericDiffMethod method> |
| struct Differencer { |
| // Mutates parameters but must restore them before return. |
| static bool EvaluateJacobianForParameterBlock( |
| const CostFunctionNoJacobian *function, |
| double const* residuals_at_eval_point, |
| double **parameters, |
| double **jacobians) { |
| using Eigen::Map; |
| using Eigen::Matrix; |
| using Eigen::RowMajor; |
| using Eigen::ColMajor; |
| |
| typedef Matrix<double, num_residuals, 1> ResidualVector; |
| typedef Matrix<double, parameter_block_size, 1> ParameterVector; |
| typedef Matrix<double, num_residuals, parameter_block_size, |
| (parameter_block_size == 1 && |
| num_residuals > 1) ? ColMajor : RowMajor> JacobianMatrix; |
| |
| Map<JacobianMatrix> parameter_jacobian(jacobians[parameter_block], |
| num_residuals, |
| parameter_block_size); |
| |
| // Mutate 1 element at a time and then restore. |
| Map<ParameterVector> x_plus_delta(parameters[parameter_block], |
| parameter_block_size); |
| ParameterVector x(x_plus_delta); |
| |
| // TODO(keir): Pick a smarter number! In theory a good choice is sqrt(eps) * |
| // x, which for doubles means about 1e-8 * x. However, I have found this |
| // number too optimistic. This number should be exposed for users to change. |
| const double kRelativeStepSize = 1e-6; |
| |
| ParameterVector step_size = x.array().abs() * kRelativeStepSize; |
| |
| // To handle cases where a parameter is exactly zero, instead use the mean |
| // step_size for the other dimensions. |
| double fallback_step_size = step_size.sum() / step_size.rows(); |
| if (fallback_step_size == 0.0) { |
| // If all the parameters are zero, there's no good answer. Take |
| // kRelativeStepSize as a guess and hope for the best. |
| fallback_step_size = kRelativeStepSize; |
| } |
| |
| // For each parameter in the parameter block, use finite differences to |
| // compute the derivative for that parameter. |
| for (int j = 0; j < parameter_block_size; ++j) { |
| if (step_size(j) == 0.0) { |
| // The parameter is exactly zero, so compromise and use the mean |
| // step_size from the other parameters. This can break in many cases, |
| // but it's hard to pick a good number without problem specific |
| // knowledge. |
| step_size(j) = fallback_step_size; |
| } |
| x_plus_delta(j) = x(j) + step_size(j); |
| |
| double residuals[num_residuals]; // NOLINT |
| if (!function->Evaluate(parameters, residuals, NULL)) { |
| // Something went wrong; bail. |
| return false; |
| } |
| |
| // Compute this column of the jacobian in 3 steps: |
| // 1. Store residuals for the forward part. |
| // 2. Subtract residuals for the backward (or 0) part. |
| // 3. Divide out the run. |
| parameter_jacobian.col(j) = |
| Map<const ResidualVector>(residuals, num_residuals); |
| |
| double one_over_h = 1 / step_size(j); |
| if (method == CENTRAL) { |
| // Compute the function on the other side of x(j). |
| x_plus_delta(j) = x(j) - step_size(j); |
| |
| if (!function->Evaluate(parameters, residuals, NULL)) { |
| // Something went wrong; bail. |
| return false; |
| } |
| parameter_jacobian.col(j) -= |
| Map<ResidualVector>(residuals, num_residuals, 1); |
| one_over_h /= 2; |
| } else { |
| // Forward difference only; reuse existing residuals evaluation. |
| parameter_jacobian.col(j) -= |
| Map<const ResidualVector>(residuals_at_eval_point, num_residuals); |
| } |
| x_plus_delta(j) = x(j); // Restore x_plus_delta. |
| |
| // Divide out the run to get slope. |
| parameter_jacobian.col(j) *= one_over_h; |
| } |
| return true; |
| } |
| }; |
| |
| // Prevent invalid instantiations. |
| template <typename CostFunctionNoJacobian, |
| int num_residuals, |
| int parameter_block, |
| NumericDiffMethod method> |
| struct Differencer<CostFunctionNoJacobian, |
| num_residuals, |
| 0 /* parameter_block_size */, |
| parameter_block, |
| method> { |
| static bool EvaluateJacobianForParameterBlock( |
| const CostFunctionNoJacobian *function, |
| double const* residuals_at_eval_point, |
| double **parameters, |
| double **jacobians) { |
| LOG(FATAL) << "Shouldn't get here."; |
| return true; |
| } |
| }; |
| |
| template <typename CostFunctionNoJacobian, |
| NumericDiffMethod method = CENTRAL, int M = 0, |
| int N0 = 0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0, int N5 = 0> |
| class NumericDiffCostFunction |
| : public SizedCostFunction<M, N0, N1, N2, N3, N4, N5> { |
| public: |
| NumericDiffCostFunction(CostFunctionNoJacobian* function, |
| Ownership ownership) |
| : function_(function), ownership_(ownership) {} |
| |
| virtual ~NumericDiffCostFunction() { |
| if (ownership_ != TAKE_OWNERSHIP) { |
| function_.release(); |
| } |
| } |
| |
| virtual bool Evaluate(double const* const* parameters, |
| double* residuals, |
| double** jacobians) const { |
| // Get the function value (residuals) at the the point to evaluate. |
| bool success = function_->Evaluate(parameters, residuals, NULL); |
| if (!success) { |
| // Something went wrong; ignore the jacobian. |
| return false; |
| } |
| if (!jacobians) { |
| // Nothing to do; just forward. |
| return true; |
| } |
| |
| // Create a copy of the parameters which will get mutated. |
| const int kParametersSize = N0 + N1 + N2 + N3 + N4 + N5; |
| double parameters_copy[kParametersSize]; |
| double *parameters_references_copy[6]; |
| parameters_references_copy[0] = ¶meters_copy[0]; |
| parameters_references_copy[1] = ¶meters_copy[0] + N0; |
| parameters_references_copy[2] = ¶meters_copy[0] + N0 + N1; |
| parameters_references_copy[3] = ¶meters_copy[0] + N0 + N1 + N2; |
| parameters_references_copy[4] = ¶meters_copy[0] + N0 + N1 + N2 + N3; |
| parameters_references_copy[5] = |
| ¶meters_copy[0] + N0 + N1 + N2 + N3 + N4; |
| |
| #define COPY_PARAMETER_BLOCK(block) \ |
| if (N ## block) memcpy(parameters_references_copy[block], \ |
| parameters[block], \ |
| sizeof(double) * N ## block); // NOLINT |
| COPY_PARAMETER_BLOCK(0); |
| COPY_PARAMETER_BLOCK(1); |
| COPY_PARAMETER_BLOCK(2); |
| COPY_PARAMETER_BLOCK(3); |
| COPY_PARAMETER_BLOCK(4); |
| COPY_PARAMETER_BLOCK(5); |
| #undef COPY_PARAMETER_BLOCK |
| |
| #define EVALUATE_JACOBIAN_FOR_BLOCK(block) \ |
| if (N ## block && jacobians[block]) { \ |
| if (!Differencer<CostFunctionNoJacobian, /* NOLINT */ \ |
| M, \ |
| N ## block, \ |
| block, \ |
| method>::EvaluateJacobianForParameterBlock( \ |
| function_.get(), \ |
| residuals, \ |
| parameters_references_copy, \ |
| jacobians)) { \ |
| return false; \ |
| } \ |
| } |
| EVALUATE_JACOBIAN_FOR_BLOCK(0); |
| EVALUATE_JACOBIAN_FOR_BLOCK(1); |
| EVALUATE_JACOBIAN_FOR_BLOCK(2); |
| EVALUATE_JACOBIAN_FOR_BLOCK(3); |
| EVALUATE_JACOBIAN_FOR_BLOCK(4); |
| EVALUATE_JACOBIAN_FOR_BLOCK(5); |
| #undef EVALUATE_JACOBIAN_FOR_BLOCK |
| return true; |
| } |
| |
| private: |
| internal::scoped_ptr<CostFunctionNoJacobian> function_; |
| Ownership ownership_; |
| }; |
| |
| } // namespace ceres |
| |
| #endif // CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_ |