| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
 | // http://code.google.com/p/ceres-solver/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 | // | 
 | // An example of solving a dynamically sized problem with various | 
 | // solvers and loss functions. | 
 | // | 
 | // For a simpler bare bones example of doing bundle adjustment with | 
 | // Ceres, please see simple_bundle_adjuster.cc. | 
 | // | 
 | // NOTE: This example will not compile without gflags and SuiteSparse. | 
 | // | 
 | // The problem being solved here is known as a Bundle Adjustment | 
 | // problem in computer vision. Given a set of 3d points X_1, ..., X_n, | 
 | // a set of cameras P_1, ..., P_m. If the point X_i is visible in | 
 | // image j, then there is a 2D observation u_ij that is the expected | 
 | // projection of X_i using P_j. The aim of this optimization is to | 
 | // find values of X_i and P_j such that the reprojection error | 
 | // | 
 | //    E(X,P) =  sum_ij  |u_ij - P_j X_i|^2 | 
 | // | 
 | // is minimized. | 
 | // | 
 | // The problem used here comes from a collection of bundle adjustment | 
 | // problems published at University of Washington. | 
 | // http://grail.cs.washington.edu/projects/bal | 
 |  | 
 | #include <algorithm> | 
 | #include <cmath> | 
 | #include <cstdio> | 
 | #include <cstdlib> | 
 | #include <string> | 
 | #include <vector> | 
 |  | 
 | #include "bal_problem.h" | 
 | #include "ceres/ceres.h" | 
 | #include "ceres/random.h" | 
 | #include "gflags/gflags.h" | 
 | #include "glog/logging.h" | 
 | #include "snavely_reprojection_error.h" | 
 |  | 
 | DEFINE_string(input, "", "Input File name"); | 
 | DEFINE_bool(use_quaternions, false, "If true, uses quaternions to represent " | 
 |             "rotations. If false, angle axis is used"); | 
 | DEFINE_bool(use_local_parameterization, false, "For quaternions, use a local " | 
 |             "parameterization."); | 
 | DEFINE_bool(robustify, false, "Use a robust loss function"); | 
 |  | 
 | DEFINE_string(trust_region_strategy, "lm", "Options are: lm, dogleg"); | 
 | DEFINE_double(eta, 1e-2, "Default value for eta. Eta determines the " | 
 |              "accuracy of each linear solve of the truncated newton step. " | 
 |              "Changing this parameter can affect solve performance "); | 
 | DEFINE_string(solver_type, "sparse_schur", "Options are: " | 
 |               "sparse_schur, dense_schur, iterative_schur, sparse_cholesky, " | 
 |               "dense_qr, dense_cholesky and conjugate_gradients"); | 
 | DEFINE_string(preconditioner_type, "jacobi", "Options are: " | 
 |               "identity, jacobi, schur_jacobi, cluster_jacobi, " | 
 |               "cluster_tridiagonal"); | 
 | DEFINE_string(sparse_linear_algebra_library, "suitesparse", | 
 |               "Options are: suitesparse and cxsparse"); | 
 |  | 
 | DEFINE_string(ordering_type, "schur", "Options are: schur, user, natural"); | 
 | DEFINE_string(dogleg_type, "traditional", "Options are: traditional, subspace"); | 
 | DEFINE_bool(use_block_amd, true, "Use a block oriented fill reducing " | 
 |             "ordering."); | 
 |  | 
 | DEFINE_int32(num_threads, 1, "Number of threads"); | 
 | DEFINE_int32(num_iterations, 5, "Number of iterations"); | 
 | DEFINE_double(max_solver_time, 1e32, "Maximum solve time in seconds."); | 
 | DEFINE_bool(nonmonotonic_steps, false, "Trust region algorithm can use" | 
 |             " nonmonotic steps"); | 
 |  | 
 | DEFINE_double(rotation_sigma, 0.0, "Standard deviation of camera rotation " | 
 |               "perturbation."); | 
 | DEFINE_double(translation_sigma, 0.0, "Standard deviation of the camera " | 
 |               "translation perturbation."); | 
 | DEFINE_double(point_sigma, 0.0, "Standard deviation of the point " | 
 |               "perturbation"); | 
 | DEFINE_int32(random_seed, 38401, "Random seed used to set the state " | 
 |              "of the pseudo random number generator used to generate " | 
 |              "the pertubations."); | 
 | DEFINE_string(solver_log, "", "File to record the solver execution to."); | 
 |  | 
 | namespace ceres { | 
 | namespace examples { | 
 |  | 
 | void SetLinearSolver(Solver::Options* options) { | 
 |   if (FLAGS_solver_type == "sparse_schur") { | 
 |     options->linear_solver_type = ceres::SPARSE_SCHUR; | 
 |   } else if (FLAGS_solver_type == "dense_schur") { | 
 |     options->linear_solver_type = ceres::DENSE_SCHUR; | 
 |   } else if (FLAGS_solver_type == "iterative_schur") { | 
 |     options->linear_solver_type = ceres::ITERATIVE_SCHUR; | 
 |   } else if (FLAGS_solver_type == "sparse_cholesky") { | 
 |     options->linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY; | 
 |   } else if (FLAGS_solver_type == "cgnr") { | 
 |     options->linear_solver_type = ceres::CGNR; | 
 |   } else if (FLAGS_solver_type == "dense_qr") { | 
 |     // DENSE_QR is included here for completeness, but actually using | 
 |     // this option is a bad idea due to the amount of memory needed | 
 |     // to store even the smallest of the bundle adjustment jacobian | 
 |     // arrays | 
 |     options->linear_solver_type = ceres::DENSE_QR; | 
 |   } else if (FLAGS_solver_type == "dense_cholesky") { | 
 |     // DENSE_NORMAL_CHOLESKY is included here for completeness, but | 
 |     // actually using this option is a bad idea due to the amount of | 
 |     // memory needed to store even the smallest of the bundle | 
 |     // adjustment jacobian arrays | 
 |     options->linear_solver_type = ceres::DENSE_NORMAL_CHOLESKY; | 
 |   } else { | 
 |     LOG(FATAL) << "Unknown ceres solver type: " | 
 |                << FLAGS_solver_type; | 
 |   } | 
 |  | 
 |   if (options->linear_solver_type == ceres::CGNR) { | 
 |     options->linear_solver_min_num_iterations = 5; | 
 |     if (FLAGS_preconditioner_type == "identity") { | 
 |       options->preconditioner_type = ceres::IDENTITY; | 
 |     } else if (FLAGS_preconditioner_type == "jacobi") { | 
 |       options->preconditioner_type = ceres::JACOBI; | 
 |     } else { | 
 |       LOG(FATAL) << "For CGNR, only identity and jacobian " | 
 |                  << "preconditioners are supported. Got: " | 
 |                  << FLAGS_preconditioner_type; | 
 |     } | 
 |   } | 
 |  | 
 |   if (options->linear_solver_type == ceres::ITERATIVE_SCHUR) { | 
 |     options->linear_solver_min_num_iterations = 5; | 
 |     if (FLAGS_preconditioner_type == "identity") { | 
 |       options->preconditioner_type = ceres::IDENTITY; | 
 |     } else if (FLAGS_preconditioner_type == "jacobi") { | 
 |       options->preconditioner_type = ceres::JACOBI; | 
 |     } else if (FLAGS_preconditioner_type == "schur_jacobi") { | 
 |       options->preconditioner_type = ceres::SCHUR_JACOBI; | 
 |     } else if (FLAGS_preconditioner_type == "cluster_jacobi") { | 
 |       options->preconditioner_type = ceres::CLUSTER_JACOBI; | 
 |     } else if (FLAGS_preconditioner_type == "cluster_tridiagonal") { | 
 |       options->preconditioner_type = ceres::CLUSTER_TRIDIAGONAL; | 
 |     } else { | 
 |       LOG(FATAL) << "Unknown ceres preconditioner type: " | 
 |                  << FLAGS_preconditioner_type; | 
 |     } | 
 |   } | 
 |  | 
 |   if (FLAGS_sparse_linear_algebra_library == "suitesparse") { | 
 |     options->sparse_linear_algebra_library = SUITE_SPARSE; | 
 |   } else if (FLAGS_sparse_linear_algebra_library == "cxsparse") { | 
 |     options->sparse_linear_algebra_library = CX_SPARSE; | 
 |   } else { | 
 |     LOG(FATAL) << "Unknown sparse linear algebra library type."; | 
 |   } | 
 |  | 
 |   options->num_linear_solver_threads = FLAGS_num_threads; | 
 | } | 
 |  | 
 | void SetOrdering(BALProblem* bal_problem, Solver::Options* options) { | 
 |   options->use_block_amd = FLAGS_use_block_amd; | 
 |  | 
 |   // Only non-Schur solvers support the natural ordering for this | 
 |   // problem. | 
 |   if (FLAGS_ordering_type == "natural") { | 
 |     if (options->linear_solver_type == SPARSE_SCHUR || | 
 |         options->linear_solver_type == DENSE_SCHUR || | 
 |         options->linear_solver_type == ITERATIVE_SCHUR) { | 
 |       LOG(FATAL) << "Natural ordering with Schur type solver does not work."; | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   // Bundle adjustment problems have a sparsity structure that makes | 
 |   // them amenable to more specialized and much more efficient | 
 |   // solution strategies. The SPARSE_SCHUR, DENSE_SCHUR and | 
 |   // ITERATIVE_SCHUR solvers make use of this specialized | 
 |   // structure. Using them however requires that the ParameterBlocks | 
 |   // are in a particular order (points before cameras) and | 
 |   // Solver::Options::num_eliminate_blocks is set to the number of | 
 |   // points. | 
 |   // | 
 |   // This can either be done by specifying Options::ordering_type = | 
 |   // ceres::SCHUR, in which case Ceres will automatically determine | 
 |   // the right ParameterBlock ordering, or by manually specifying a | 
 |   // suitable ordering vector and defining | 
 |   // Options::num_eliminate_blocks. | 
 |   if (FLAGS_ordering_type == "schur") { | 
 |     options->ordering_type = ceres::SCHUR; | 
 |     return; | 
 |   } | 
 |  | 
 |   options->ordering_type = ceres::USER; | 
 |   const int num_points = bal_problem->num_points(); | 
 |   const int point_block_size = bal_problem->point_block_size(); | 
 |   double* points = bal_problem->mutable_points(); | 
 |   const int num_cameras = bal_problem->num_cameras(); | 
 |   const int camera_block_size = bal_problem->camera_block_size(); | 
 |   double* cameras = bal_problem->mutable_cameras(); | 
 |  | 
 |   // The points come before the cameras. | 
 |   for (int i = 0; i < num_points; ++i) { | 
 |     options->ordering.push_back(points + point_block_size * i); | 
 |   } | 
 |  | 
 |   for (int i = 0; i < num_cameras; ++i) { | 
 |     // When using axis-angle, there is a single parameter block for | 
 |     // the entire camera. | 
 |     options->ordering.push_back(cameras + camera_block_size * i); | 
 |  | 
 |     // If quaternions are used, there are two blocks, so add the | 
 |     // second block to the ordering. | 
 |     if (FLAGS_use_quaternions) { | 
 |       options->ordering.push_back(cameras + camera_block_size * i + 4); | 
 |     } | 
 |   } | 
 |  | 
 |   options->num_eliminate_blocks = num_points; | 
 | } | 
 |  | 
 | void SetMinimizerOptions(Solver::Options* options) { | 
 |   options->max_num_iterations = FLAGS_num_iterations; | 
 |   options->minimizer_progress_to_stdout = true; | 
 |   options->num_threads = FLAGS_num_threads; | 
 |   options->eta = FLAGS_eta; | 
 |   options->max_solver_time_in_seconds = FLAGS_max_solver_time; | 
 |   options->use_nonmonotonic_steps = FLAGS_nonmonotonic_steps; | 
 |   if (FLAGS_trust_region_strategy == "lm") { | 
 |     options->trust_region_strategy_type = LEVENBERG_MARQUARDT; | 
 |   } else if (FLAGS_trust_region_strategy == "dogleg") { | 
 |     options->trust_region_strategy_type = DOGLEG; | 
 |   } else { | 
 |     LOG(FATAL) << "Unknown trust region strategy: " | 
 |                << FLAGS_trust_region_strategy; | 
 |   } | 
 |   if (FLAGS_dogleg_type == "traditional") { | 
 |     options->dogleg_type = TRADITIONAL_DOGLEG; | 
 |   } else if (FLAGS_dogleg_type == "subspace") { | 
 |     options->dogleg_type = SUBSPACE_DOGLEG; | 
 |   } else { | 
 |     LOG(FATAL) << "Unknown dogleg type: " | 
 |                << FLAGS_dogleg_type; | 
 |   } | 
 | } | 
 |  | 
 | void SetSolverOptionsFromFlags(BALProblem* bal_problem, | 
 |                                Solver::Options* options) { | 
 |   SetMinimizerOptions(options); | 
 |   SetLinearSolver(options); | 
 |   SetOrdering(bal_problem, options); | 
 | } | 
 |  | 
 | void BuildProblem(BALProblem* bal_problem, Problem* problem) { | 
 |   const int point_block_size = bal_problem->point_block_size(); | 
 |   const int camera_block_size = bal_problem->camera_block_size(); | 
 |   double* points = bal_problem->mutable_points(); | 
 |   double* cameras = bal_problem->mutable_cameras(); | 
 |  | 
 |   // Observations is 2*num_observations long array observations = | 
 |   // [u_1, u_2, ... , u_n], where each u_i is two dimensional, the x | 
 |   // and y positions of the observation. | 
 |   const double* observations = bal_problem->observations(); | 
 |  | 
 |   for (int i = 0; i < bal_problem->num_observations(); ++i) { | 
 |     CostFunction* cost_function; | 
 |     // Each Residual block takes a point and a camera as input and | 
 |     // outputs a 2 dimensional residual. | 
 |     if (FLAGS_use_quaternions) { | 
 |       cost_function = new AutoDiffCostFunction< | 
 |           SnavelyReprojectionErrorWithQuaternions, 2, 4, 6, 3>( | 
 |               new SnavelyReprojectionErrorWithQuaternions( | 
 |                   observations[2 * i + 0], | 
 |                   observations[2 * i + 1])); | 
 |     } else { | 
 |       cost_function = | 
 |           new AutoDiffCostFunction<SnavelyReprojectionError, 2, 9, 3>( | 
 |               new SnavelyReprojectionError(observations[2 * i + 0], | 
 |                                            observations[2 * i + 1])); | 
 |     } | 
 |  | 
 |     // If enabled use Huber's loss function. | 
 |     LossFunction* loss_function = FLAGS_robustify ? new HuberLoss(1.0) : NULL; | 
 |  | 
 |     // Each observation correponds to a pair of a camera and a point | 
 |     // which are identified by camera_index()[i] and point_index()[i] | 
 |     // respectively. | 
 |     double* camera = | 
 |         cameras + camera_block_size * bal_problem->camera_index()[i]; | 
 |     double* point = points + point_block_size * bal_problem->point_index()[i]; | 
 |  | 
 |     if (FLAGS_use_quaternions) { | 
 |       // When using quaternions, we split the camera into two | 
 |       // parameter blocks. One of size 4 for the quaternion and the | 
 |       // other of size 6 containing the translation, focal length and | 
 |       // the radial distortion parameters. | 
 |       problem->AddResidualBlock(cost_function, | 
 |                                 loss_function, | 
 |                                 camera, | 
 |                                 camera + 4, | 
 |                                 point); | 
 |     } else { | 
 |       problem->AddResidualBlock(cost_function, loss_function, camera, point); | 
 |     } | 
 |   } | 
 |  | 
 |   if (FLAGS_use_quaternions && FLAGS_use_local_parameterization) { | 
 |     LocalParameterization* quaternion_parameterization = | 
 |          new QuaternionParameterization; | 
 |     for (int i = 0; i < bal_problem->num_cameras(); ++i) { | 
 |       problem->SetParameterization(cameras + camera_block_size * i, | 
 |                                    quaternion_parameterization); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void SolveProblem(const char* filename) { | 
 |   BALProblem bal_problem(filename, FLAGS_use_quaternions); | 
 |   Problem problem; | 
 |  | 
 |   SetRandomState(FLAGS_random_seed); | 
 |   bal_problem.Normalize(); | 
 |   bal_problem.Perturb(FLAGS_rotation_sigma, | 
 |                       FLAGS_translation_sigma, | 
 |                       FLAGS_point_sigma); | 
 |  | 
 |   BuildProblem(&bal_problem, &problem); | 
 |   Solver::Options options; | 
 |   SetSolverOptionsFromFlags(&bal_problem, &options); | 
 |   options.solver_log = FLAGS_solver_log; | 
 |   options.gradient_tolerance *= 1e-3; | 
 |  | 
 |   Solver::Summary summary; | 
 |   Solve(options, &problem, &summary); | 
 |   std::cout << summary.FullReport() << "\n"; | 
 | } | 
 |  | 
 | }  // namespace examples | 
 | }  // namespace ceres | 
 |  | 
 | int main(int argc, char** argv) { | 
 |   google::ParseCommandLineFlags(&argc, &argv, true); | 
 |   google::InitGoogleLogging(argv[0]); | 
 |   if (FLAGS_input.empty()) { | 
 |     LOG(ERROR) << "Usage: bundle_adjustment_example --input=bal_problem"; | 
 |     return 1; | 
 |   } | 
 |  | 
 |   CHECK(FLAGS_use_quaternions || !FLAGS_use_local_parameterization) | 
 |       << "--use_local_parameterization can only be used with " | 
 |       << "--use_quaternions."; | 
 |   ceres::examples::SolveProblem(FLAGS_input.c_str()); | 
 |   return 0; | 
 | } |