| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
 | // http://code.google.com/p/ceres-solver/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 | // | 
 | // A preconditioned conjugate gradients solver | 
 | // (ConjugateGradientsSolver) for positive semidefinite linear | 
 | // systems. | 
 | // | 
 | // We have also augmented the termination criterion used by this | 
 | // solver to support not just residual based termination but also | 
 | // termination based on decrease in the value of the quadratic model | 
 | // that CG optimizes. | 
 |  | 
 | #include "ceres/conjugate_gradients_solver.h" | 
 |  | 
 | #include <cmath> | 
 | #include <cstddef> | 
 | #include "ceres/fpclassify.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/linear_operator.h" | 
 | #include "ceres/types.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 | namespace { | 
 |  | 
 | bool IsZeroOrInfinity(double x) { | 
 |   return ((x == 0.0) || (IsInfinite(x))); | 
 | } | 
 |  | 
 | // Constant used in the MATLAB implementation ~ 2 * eps. | 
 | const double kEpsilon = 2.2204e-16; | 
 |  | 
 | }  // namespace | 
 |  | 
 | ConjugateGradientsSolver::ConjugateGradientsSolver( | 
 |     const LinearSolver::Options& options) | 
 |     : options_(options) { | 
 | } | 
 |  | 
 | LinearSolver::Summary ConjugateGradientsSolver::Solve( | 
 |     LinearOperator* A, | 
 |     const double* b, | 
 |     const LinearSolver::PerSolveOptions& per_solve_options, | 
 |     double* x) { | 
 |   CHECK_NOTNULL(A); | 
 |   CHECK_NOTNULL(x); | 
 |   CHECK_NOTNULL(b); | 
 |   CHECK_EQ(A->num_rows(), A->num_cols()); | 
 |  | 
 |   LinearSolver::Summary summary; | 
 |   summary.termination_type = MAX_ITERATIONS; | 
 |   summary.num_iterations = 0; | 
 |  | 
 |   int num_cols = A->num_cols(); | 
 |   VectorRef xref(x, num_cols); | 
 |   ConstVectorRef bref(b, num_cols); | 
 |  | 
 |   double norm_b = bref.norm(); | 
 |   if (norm_b == 0.0) { | 
 |     xref.setZero(); | 
 |     summary.termination_type = TOLERANCE; | 
 |     return summary; | 
 |   } | 
 |  | 
 |   Vector r(num_cols); | 
 |   Vector p(num_cols); | 
 |   Vector z(num_cols); | 
 |   Vector tmp(num_cols); | 
 |  | 
 |   double tol_r = per_solve_options.r_tolerance * norm_b; | 
 |  | 
 |   tmp.setZero(); | 
 |   A->RightMultiply(x, tmp.data()); | 
 |   r = bref - tmp; | 
 |   double norm_r = r.norm(); | 
 |  | 
 |   if (norm_r <= tol_r) { | 
 |     summary.termination_type = TOLERANCE; | 
 |     return summary; | 
 |   } | 
 |  | 
 |   double rho = 1.0; | 
 |  | 
 |   // Initial value of the quadratic model Q = x'Ax - 2 * b'x. | 
 |   double Q0 = -1.0 * xref.dot(bref + r); | 
 |  | 
 |   for (summary.num_iterations = 1; | 
 |        summary.num_iterations < options_.max_num_iterations; | 
 |        ++summary.num_iterations) { | 
 |     VLOG(3) << "cg iteration " << summary.num_iterations; | 
 |  | 
 |     // Apply preconditioner | 
 |     if (per_solve_options.preconditioner != NULL) { | 
 |       z.setZero(); | 
 |       per_solve_options.preconditioner->RightMultiply(r.data(), z.data()); | 
 |     } else { | 
 |       z = r; | 
 |     } | 
 |  | 
 |     double last_rho = rho; | 
 |     rho = r.dot(z); | 
 |  | 
 |     if (IsZeroOrInfinity(rho)) { | 
 |       LOG(ERROR) << "Numerical failure. rho = " << rho; | 
 |       summary.termination_type = FAILURE; | 
 |       break; | 
 |     }; | 
 |  | 
 |     if (summary.num_iterations == 1) { | 
 |       p = z; | 
 |     } else { | 
 |       double beta = rho / last_rho; | 
 |       if (IsZeroOrInfinity(beta)) { | 
 |         LOG(ERROR) << "Numerical failure. beta = " << beta; | 
 |         summary.termination_type = FAILURE; | 
 |         break; | 
 |       } | 
 |       p = z + beta * p; | 
 |     } | 
 |  | 
 |     Vector& q = z; | 
 |     q.setZero(); | 
 |     A->RightMultiply(p.data(), q.data()); | 
 |     double pq = p.dot(q); | 
 |  | 
 |     if ((pq <= 0) || IsInfinite(pq))  { | 
 |       LOG(ERROR) << "Numerical failure. pq = " << pq; | 
 |       summary.termination_type = FAILURE; | 
 |       break; | 
 |     } | 
 |  | 
 |     double alpha = rho / pq; | 
 |     if (IsInfinite(alpha)) { | 
 |       LOG(ERROR) << "Numerical failure. alpha " << alpha; | 
 |       summary.termination_type = FAILURE; | 
 |       break; | 
 |     } | 
 |  | 
 |     xref = xref + alpha * p; | 
 |  | 
 |     // Ideally we would just use the update r = r - alpha*q to keep | 
 |     // track of the residual vector. However this estimate tends to | 
 |     // drift over time due to round off errors. Thus every | 
 |     // residual_reset_period iterations, we calculate the residual as | 
 |     // r = b - Ax. We do not do this every iteration because this | 
 |     // requires an additional matrix vector multiply which would | 
 |     // double the complexity of the CG algorithm. | 
 |     if (summary.num_iterations % options_.residual_reset_period == 0) { | 
 |       tmp.setZero(); | 
 |       A->RightMultiply(x, tmp.data()); | 
 |       r = bref - tmp; | 
 |     } else { | 
 |       r = r - alpha * q; | 
 |     } | 
 |  | 
 |     // Quadratic model based termination. | 
 |     //   Q1 = x'Ax - 2 * b' x. | 
 |     double Q1 = -1.0 * xref.dot(bref + r); | 
 |  | 
 |     // For PSD matrices A, let | 
 |     // | 
 |     //   Q(x) = x'Ax - 2b'x | 
 |     // | 
 |     // be the cost of the quadratic function defined by A and b. Then, | 
 |     // the solver terminates at iteration i if | 
 |     // | 
 |     //   i * (Q(x_i) - Q(x_i-1)) / Q(x_i) < q_tolerance. | 
 |     // | 
 |     // This termination criterion is more useful when using CG to | 
 |     // solve the Newton step. This particular convergence test comes | 
 |     // from Stephen Nash's work on truncated Newton | 
 |     // methods. References: | 
 |     // | 
 |     //   1. Stephen G. Nash & Ariela Sofer, Assessing A Search | 
 |     //   Direction Within A Truncated Newton Method, Operation | 
 |     //   Research Letters 9(1990) 219-221. | 
 |     // | 
 |     //   2. Stephen G. Nash, A Survey of Truncated Newton Methods, | 
 |     //   Journal of Computational and Applied Mathematics, | 
 |     //   124(1-2), 45-59, 2000. | 
 |     // | 
 |     double zeta = summary.num_iterations * (Q1 - Q0) / Q1; | 
 |     VLOG(3) << "Q termination: zeta " << zeta | 
 |             << " " << per_solve_options.q_tolerance; | 
 |     if (zeta < per_solve_options.q_tolerance) { | 
 |       summary.termination_type = TOLERANCE; | 
 |       break; | 
 |     } | 
 |     Q0 = Q1; | 
 |  | 
 |     // Residual based termination. | 
 |     norm_r = r. norm(); | 
 |     VLOG(3) << "R termination: norm_r " << norm_r | 
 |             << " " << tol_r; | 
 |     if (norm_r <= tol_r) { | 
 |       summary.termination_type = TOLERANCE; | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   return summary; | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |