| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
 | // http://code.google.com/p/ceres-solver/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: keir@google.com (Keir Mierle) | 
 | // | 
 | // Based on the templated version in public/numeric_diff_cost_function.h. | 
 |  | 
 | #include "ceres/runtime_numeric_diff_cost_function.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <numeric> | 
 | #include <vector> | 
 | #include "Eigen/Dense" | 
 | #include "ceres/cost_function.h" | 
 | #include "ceres/internal/scoped_ptr.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 | namespace { | 
 |  | 
 | bool EvaluateJacobianForParameterBlock(const CostFunction* function, | 
 |                                        int parameter_block_size, | 
 |                                        int parameter_block, | 
 |                                        RuntimeNumericDiffMethod method, | 
 |                                        double relative_step_size, | 
 |                                        double const* residuals_at_eval_point, | 
 |                                        double** parameters, | 
 |                                        double** jacobians) { | 
 |   using Eigen::Map; | 
 |   using Eigen::Matrix; | 
 |   using Eigen::Dynamic; | 
 |   using Eigen::RowMajor; | 
 |  | 
 |   typedef Matrix<double, Dynamic, 1> ResidualVector; | 
 |   typedef Matrix<double, Dynamic, 1> ParameterVector; | 
 |   typedef Matrix<double, Dynamic, Dynamic, RowMajor> JacobianMatrix; | 
 |  | 
 |   int num_residuals = function->num_residuals(); | 
 |  | 
 |   Map<JacobianMatrix> parameter_jacobian(jacobians[parameter_block], | 
 |                                          num_residuals, | 
 |                                          parameter_block_size); | 
 |  | 
 |   // Mutate one element at a time and then restore. | 
 |   Map<ParameterVector> x_plus_delta(parameters[parameter_block], | 
 |                                     parameter_block_size); | 
 |   ParameterVector x(x_plus_delta); | 
 |   ParameterVector step_size = x.array().abs() * relative_step_size; | 
 |  | 
 |   // To handle cases where a paremeter is exactly zero, instead use the mean | 
 |   // step_size for the other dimensions. | 
 |   double fallback_step_size = step_size.sum() / step_size.rows(); | 
 |   if (fallback_step_size == 0.0) { | 
 |     // If all the parameters are zero, there's no good answer. Use the given | 
 |     // relative step_size as absolute step_size and hope for the best. | 
 |     fallback_step_size = relative_step_size; | 
 |   } | 
 |  | 
 |   // For each parameter in the parameter block, use finite differences to | 
 |   // compute the derivative for that parameter. | 
 |   for (int j = 0; j < parameter_block_size; ++j) { | 
 |     if (step_size(j) == 0.0) { | 
 |       // The parameter is exactly zero, so compromise and use the mean step_size | 
 |       // from the other parameters. This can break in many cases, but it's hard | 
 |       // to pick a good number without problem specific knowledge. | 
 |       step_size(j) = fallback_step_size; | 
 |     } | 
 |     x_plus_delta(j) = x(j) + step_size(j); | 
 |  | 
 |     ResidualVector residuals(num_residuals); | 
 |     if (!function->Evaluate(parameters, &residuals[0], NULL)) { | 
 |       // Something went wrong; bail. | 
 |       return false; | 
 |     } | 
 |  | 
 |     // Compute this column of the jacobian in 3 steps: | 
 |     // 1. Store residuals for the forward part. | 
 |     // 2. Subtract residuals for the backward (or 0) part. | 
 |     // 3. Divide out the run. | 
 |     parameter_jacobian.col(j) = residuals; | 
 |  | 
 |     double one_over_h = 1 / step_size(j); | 
 |     if (method == CENTRAL) { | 
 |       // Compute the function on the other side of x(j). | 
 |       x_plus_delta(j) = x(j) - step_size(j); | 
 |  | 
 |       if (!function->Evaluate(parameters, &residuals[0], NULL)) { | 
 |         // Something went wrong; bail. | 
 |         return false; | 
 |       } | 
 |       parameter_jacobian.col(j) -= residuals; | 
 |       one_over_h /= 2; | 
 |     } else { | 
 |       // Forward difference only; reuse existing residuals evaluation. | 
 |       parameter_jacobian.col(j) -= | 
 |           Map<const ResidualVector>(residuals_at_eval_point, num_residuals); | 
 |     } | 
 |     x_plus_delta(j) = x(j);  // Restore x_plus_delta. | 
 |  | 
 |     // Divide out the run to get slope. | 
 |     parameter_jacobian.col(j) *= one_over_h; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | class RuntimeNumericDiffCostFunction : public CostFunction { | 
 |  public: | 
 |   RuntimeNumericDiffCostFunction(const CostFunction* function, | 
 |                                  RuntimeNumericDiffMethod method, | 
 |                                  double relative_step_size) | 
 |       : function_(function), | 
 |         method_(method), | 
 |         relative_step_size_(relative_step_size) { | 
 |     *mutable_parameter_block_sizes() = function->parameter_block_sizes(); | 
 |     set_num_residuals(function->num_residuals()); | 
 |   } | 
 |  | 
 |   virtual ~RuntimeNumericDiffCostFunction() { } | 
 |  | 
 |   virtual bool Evaluate(double const* const* parameters, | 
 |                         double* residuals, | 
 |                         double** jacobians) const { | 
 |     // Get the function value (residuals) at the the point to evaluate. | 
 |     bool success = function_->Evaluate(parameters, residuals, NULL); | 
 |     if (!success) { | 
 |       // Something went wrong; ignore the jacobian. | 
 |       return false; | 
 |     } | 
 |     if (!jacobians) { | 
 |       // Nothing to do; just forward. | 
 |       return true; | 
 |     } | 
 |  | 
 |     const vector<int16>& block_sizes = function_->parameter_block_sizes(); | 
 |     CHECK(!block_sizes.empty()); | 
 |  | 
 |     // Create local space for a copy of the parameters which will get mutated. | 
 |     int parameters_size = accumulate(block_sizes.begin(), block_sizes.end(), 0); | 
 |     vector<double> parameters_copy(parameters_size); | 
 |     vector<double*> parameters_references_copy(block_sizes.size()); | 
 |     parameters_references_copy[0] = ¶meters_copy[0]; | 
 |     for (int block = 1; block < block_sizes.size(); ++block) { | 
 |       parameters_references_copy[block] = parameters_references_copy[block - 1] | 
 |           + block_sizes[block - 1]; | 
 |     } | 
 |  | 
 |     // Copy the parameters into the local temp space. | 
 |     for (int block = 0; block < block_sizes.size(); ++block) { | 
 |       memcpy(parameters_references_copy[block], | 
 |              parameters[block], | 
 |              block_sizes[block] * sizeof(*parameters[block])); | 
 |     } | 
 |  | 
 |     for (int block = 0; block < block_sizes.size(); ++block) { | 
 |       if (!jacobians[block]) { | 
 |         // No jacobian requested for this parameter / residual pair. | 
 |         continue; | 
 |       } | 
 |       if (!EvaluateJacobianForParameterBlock(function_, | 
 |                                              block_sizes[block], | 
 |                                              block, | 
 |                                              method_, | 
 |                                              relative_step_size_, | 
 |                                              residuals, | 
 |                                              ¶meters_references_copy[0], | 
 |                                              jacobians)) { | 
 |         return false; | 
 |       } | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |  private: | 
 |   const CostFunction* function_; | 
 |   RuntimeNumericDiffMethod method_; | 
 |   double relative_step_size_; | 
 | }; | 
 |  | 
 | }  // namespace | 
 |  | 
 | CostFunction* CreateRuntimeNumericDiffCostFunction( | 
 |     const CostFunction* cost_function, | 
 |     RuntimeNumericDiffMethod method, | 
 |     double relative_step_size) { | 
 |   return new RuntimeNumericDiffCostFunction(cost_function, | 
 |                                             method, | 
 |                                             relative_step_size); | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |