| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
 | // http://code.google.com/p/ceres-solver/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: keir@google.com (Keir Mierle) | 
 |  | 
 | #include "ceres/solver_impl.h" | 
 |  | 
 | #include <cstdio> | 
 | #include <iostream>  // NOLINT | 
 | #include <numeric> | 
 | #include "ceres/evaluator.h" | 
 | #include "ceres/gradient_checking_cost_function.h" | 
 | #include "ceres/iteration_callback.h" | 
 | #include "ceres/levenberg_marquardt_strategy.h" | 
 | #include "ceres/linear_solver.h" | 
 | #include "ceres/map_util.h" | 
 | #include "ceres/minimizer.h" | 
 | #include "ceres/parameter_block.h" | 
 | #include "ceres/problem.h" | 
 | #include "ceres/problem_impl.h" | 
 | #include "ceres/program.h" | 
 | #include "ceres/residual_block.h" | 
 | #include "ceres/schur_ordering.h" | 
 | #include "ceres/stringprintf.h" | 
 | #include "ceres/trust_region_minimizer.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 | namespace { | 
 |  | 
 | // Callback for updating the user's parameter blocks. Updates are only | 
 | // done if the step is successful. | 
 | class StateUpdatingCallback : public IterationCallback { | 
 |  public: | 
 |   StateUpdatingCallback(Program* program, double* parameters) | 
 |       : program_(program), parameters_(parameters) {} | 
 |  | 
 |   CallbackReturnType operator()(const IterationSummary& summary) { | 
 |     if (summary.step_is_successful) { | 
 |       program_->StateVectorToParameterBlocks(parameters_); | 
 |       program_->CopyParameterBlockStateToUserState(); | 
 |     } | 
 |     return SOLVER_CONTINUE; | 
 |   } | 
 |  | 
 |  private: | 
 |   Program* program_; | 
 |   double* parameters_; | 
 | }; | 
 |  | 
 | // Callback for logging the state of the minimizer to STDERR or STDOUT | 
 | // depending on the user's preferences and logging level. | 
 | class LoggingCallback : public IterationCallback { | 
 |  public: | 
 |   explicit LoggingCallback(bool log_to_stdout) | 
 |       : log_to_stdout_(log_to_stdout) {} | 
 |  | 
 |   ~LoggingCallback() {} | 
 |  | 
 |   CallbackReturnType operator()(const IterationSummary& summary) { | 
 |     const char* kReportRowFormat = | 
 |         "% 4d: f:% 8e d:% 3.2e g:% 3.2e h:% 3.2e " | 
 |         "rho:% 3.2e mu:% 3.2e li:% 3d it:% 3.2e tt:% 3.2e"; | 
 |     string output = StringPrintf(kReportRowFormat, | 
 |                                  summary.iteration, | 
 |                                  summary.cost, | 
 |                                  summary.cost_change, | 
 |                                  summary.gradient_max_norm, | 
 |                                  summary.step_norm, | 
 |                                  summary.relative_decrease, | 
 |                                  summary.trust_region_radius, | 
 |                                  summary.linear_solver_iterations, | 
 |                                  summary.iteration_time_in_seconds, | 
 |                                  summary.cumulative_time_in_seconds); | 
 |     if (log_to_stdout_) { | 
 |       cout << output << endl; | 
 |     } else { | 
 |       VLOG(1) << output; | 
 |     } | 
 |     return SOLVER_CONTINUE; | 
 |   } | 
 |  | 
 |  private: | 
 |   const bool log_to_stdout_; | 
 | }; | 
 |  | 
 | // Basic callback to record the execution of the solver to a file for | 
 | // offline analysis. | 
 | class FileLoggingCallback : public IterationCallback { | 
 |  public: | 
 |   explicit FileLoggingCallback(const string& filename) | 
 |       : fptr_(NULL) { | 
 |     fptr_ = fopen(filename.c_str(), "w"); | 
 |     CHECK_NOTNULL(fptr_); | 
 |   } | 
 |  | 
 |   virtual ~FileLoggingCallback() { | 
 |     if (fptr_ != NULL) { | 
 |       fclose(fptr_); | 
 |     } | 
 |   } | 
 |  | 
 |   virtual CallbackReturnType operator()(const IterationSummary& summary) { | 
 |     fprintf(fptr_, | 
 |             "%4d %e %e\n", | 
 |             summary.iteration, | 
 |             summary.cost, | 
 |             summary.cumulative_time_in_seconds); | 
 |     return SOLVER_CONTINUE; | 
 |   } | 
 |  private: | 
 |     FILE* fptr_; | 
 | }; | 
 |  | 
 | }  // namespace | 
 |  | 
 | void SolverImpl::Minimize(const Solver::Options& options, | 
 |                           Program* program, | 
 |                           Evaluator* evaluator, | 
 |                           LinearSolver* linear_solver, | 
 |                           double* parameters, | 
 |                           Solver::Summary* summary) { | 
 |   Minimizer::Options minimizer_options(options); | 
 |  | 
 |   // TODO(sameeragarwal): Add support for logging the configuration | 
 |   // and more detailed stats. | 
 |   scoped_ptr<IterationCallback> file_logging_callback; | 
 |   if (!options.solver_log.empty()) { | 
 |     file_logging_callback.reset(new FileLoggingCallback(options.solver_log)); | 
 |     minimizer_options.callbacks.insert(minimizer_options.callbacks.begin(), | 
 |                                        file_logging_callback.get()); | 
 |   } | 
 |  | 
 |   LoggingCallback logging_callback(options.minimizer_progress_to_stdout); | 
 |   if (options.logging_type != SILENT) { | 
 |     minimizer_options.callbacks.insert(minimizer_options.callbacks.begin(), | 
 |                                        &logging_callback); | 
 |   } | 
 |  | 
 |   StateUpdatingCallback updating_callback(program, parameters); | 
 |   if (options.update_state_every_iteration) { | 
 |     // This must get pushed to the front of the callbacks so that it is run | 
 |     // before any of the user callbacks. | 
 |     minimizer_options.callbacks.insert(minimizer_options.callbacks.begin(), | 
 |                                        &updating_callback); | 
 |   } | 
 |  | 
 |   minimizer_options.evaluator = evaluator; | 
 |   scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); | 
 |   minimizer_options.jacobian = jacobian.get(); | 
 |  | 
 |   TrustRegionStrategy::Options trust_region_strategy_options; | 
 |   trust_region_strategy_options.linear_solver = linear_solver; | 
 |   trust_region_strategy_options.initial_radius = | 
 |       options.initial_trust_region_radius; | 
 |   trust_region_strategy_options.max_radius = options.max_trust_region_radius; | 
 |   trust_region_strategy_options.lm_min_diagonal = options.lm_min_diagonal; | 
 |   trust_region_strategy_options.lm_max_diagonal = options.lm_max_diagonal; | 
 |   trust_region_strategy_options.trust_region_strategy_type = | 
 |       options.trust_region_strategy_type; | 
 |   trust_region_strategy_options.dogleg_type = options.dogleg_type; | 
 |   scoped_ptr<TrustRegionStrategy> strategy( | 
 |       TrustRegionStrategy::Create(trust_region_strategy_options)); | 
 |   minimizer_options.trust_region_strategy = strategy.get(); | 
 |  | 
 |   TrustRegionMinimizer minimizer; | 
 |   time_t minimizer_start_time = time(NULL); | 
 |   minimizer.Minimize(minimizer_options, parameters, summary); | 
 |   summary->minimizer_time_in_seconds = time(NULL) - minimizer_start_time; | 
 | } | 
 |  | 
 | void SolverImpl::Solve(const Solver::Options& original_options, | 
 |                        ProblemImpl* original_problem_impl, | 
 |                        Solver::Summary* summary) { | 
 |   time_t solver_start_time = time(NULL); | 
 |   Solver::Options options(original_options); | 
 |   Program* original_program = original_problem_impl->mutable_program(); | 
 |   ProblemImpl* problem_impl = original_problem_impl; | 
 |   // Reset the summary object to its default values. | 
 |   *CHECK_NOTNULL(summary) = Solver::Summary(); | 
 |  | 
 |  | 
 | #ifndef CERES_USE_OPENMP | 
 |   if (options.num_threads > 1) { | 
 |     LOG(WARNING) | 
 |         << "OpenMP support is not compiled into this binary; " | 
 |         << "only options.num_threads=1 is supported. Switching" | 
 |         << "to single threaded mode."; | 
 |     options.num_threads = 1; | 
 |   } | 
 |   if (options.num_linear_solver_threads > 1) { | 
 |     LOG(WARNING) | 
 |         << "OpenMP support is not compiled into this binary; " | 
 |         << "only options.num_linear_solver_threads=1 is supported. Switching" | 
 |         << "to single threaded mode."; | 
 |     options.num_linear_solver_threads = 1; | 
 |   } | 
 | #endif | 
 |  | 
 |   summary->linear_solver_type_given = options.linear_solver_type; | 
 |   summary->num_eliminate_blocks_given = original_options.num_eliminate_blocks; | 
 |   summary->num_threads_given = original_options.num_threads; | 
 |   summary->num_linear_solver_threads_given = | 
 |       original_options.num_linear_solver_threads; | 
 |   summary->ordering_type = original_options.ordering_type; | 
 |  | 
 |   summary->num_parameter_blocks = problem_impl->NumParameterBlocks(); | 
 |   summary->num_parameters = problem_impl->NumParameters(); | 
 |   summary->num_residual_blocks = problem_impl->NumResidualBlocks(); | 
 |   summary->num_residuals = problem_impl->NumResiduals(); | 
 |  | 
 |   summary->num_threads_used = options.num_threads; | 
 |   summary->sparse_linear_algebra_library = | 
 |       options.sparse_linear_algebra_library; | 
 |   summary->trust_region_strategy_type = options.trust_region_strategy_type; | 
 |   summary->dogleg_type = options.dogleg_type; | 
 |  | 
 |   // Evaluate the initial cost, residual vector and the jacobian | 
 |   // matrix if requested by the user. The initial cost needs to be | 
 |   // computed on the original unpreprocessed problem, as it is used to | 
 |   // determine the value of the "fixed" part of the objective function | 
 |   // after the problem has undergone reduction. | 
 |   Evaluator::Evaluate( | 
 |       original_program, | 
 |       options.num_threads, | 
 |       &(summary->initial_cost), | 
 |       options.return_initial_residuals ? &summary->initial_residuals : NULL, | 
 |       options.return_initial_gradient ? &summary->initial_gradient : NULL, | 
 |       options.return_initial_jacobian ? &summary->initial_jacobian : NULL); | 
 |    original_program->SetParameterBlockStatePtrsToUserStatePtrs(); | 
 |  | 
 |   // If the user requests gradient checking, construct a new | 
 |   // ProblemImpl by wrapping the CostFunctions of problem_impl inside | 
 |   // GradientCheckingCostFunction and replacing problem_impl with | 
 |   // gradient_checking_problem_impl. | 
 |   scoped_ptr<ProblemImpl> gradient_checking_problem_impl; | 
 |   // Save the original problem impl so we don't use the gradient | 
 |   // checking one when computing the residuals. | 
 |   if (options.check_gradients) { | 
 |     VLOG(1) << "Checking Gradients"; | 
 |     gradient_checking_problem_impl.reset( | 
 |         CreateGradientCheckingProblemImpl( | 
 |             problem_impl, | 
 |             options.numeric_derivative_relative_step_size, | 
 |             options.gradient_check_relative_precision)); | 
 |  | 
 |     // From here on, problem_impl will point to the GradientChecking version. | 
 |     problem_impl = gradient_checking_problem_impl.get(); | 
 |   } | 
 |  | 
 |   // Create the three objects needed to minimize: the transformed program, the | 
 |   // evaluator, and the linear solver. | 
 |  | 
 |   scoped_ptr<Program> reduced_program(CreateReducedProgram(&options, | 
 |                                                            problem_impl, | 
 |                                                            &summary->fixed_cost, | 
 |                                                            &summary->error)); | 
 |   if (reduced_program == NULL) { | 
 |     return; | 
 |   } | 
 |  | 
 |   summary->num_parameter_blocks_reduced = reduced_program->NumParameterBlocks(); | 
 |   summary->num_parameters_reduced = reduced_program->NumParameters(); | 
 |   summary->num_residual_blocks_reduced = reduced_program->NumResidualBlocks(); | 
 |   summary->num_residuals_reduced = reduced_program->NumResiduals(); | 
 |  | 
 |   scoped_ptr<LinearSolver> | 
 |       linear_solver(CreateLinearSolver(&options, &summary->error)); | 
 |   summary->linear_solver_type_used = options.linear_solver_type; | 
 |   summary->preconditioner_type = options.preconditioner_type; | 
 |   summary->num_eliminate_blocks_used = options.num_eliminate_blocks; | 
 |   summary->num_linear_solver_threads_used = options.num_linear_solver_threads; | 
 |  | 
 |   if (linear_solver == NULL) { | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!MaybeReorderResidualBlocks(options, | 
 |                                   reduced_program.get(), | 
 |                                   &summary->error)) { | 
 |     return; | 
 |   } | 
 |  | 
 |   scoped_ptr<Evaluator> evaluator( | 
 |       CreateEvaluator(options, reduced_program.get(), &summary->error)); | 
 |   if (evaluator == NULL) { | 
 |     return; | 
 |   } | 
 |  | 
 |   // The optimizer works on contiguous parameter vectors; allocate some. | 
 |   Vector parameters(reduced_program->NumParameters()); | 
 |  | 
 |   // Collect the discontiguous parameters into a contiguous state vector. | 
 |   reduced_program->ParameterBlocksToStateVector(parameters.data()); | 
 |  | 
 |   time_t minimizer_start_time = time(NULL); | 
 |   summary->preprocessor_time_in_seconds = | 
 |       minimizer_start_time - solver_start_time; | 
 |  | 
 |   // Run the optimization. | 
 |   Minimize(options, | 
 |            reduced_program.get(), | 
 |            evaluator.get(), | 
 |            linear_solver.get(), | 
 |            parameters.data(), | 
 |            summary); | 
 |  | 
 |   // If the user aborted mid-optimization or the optimization | 
 |   // terminated because of a numerical failure, then return without | 
 |   // updating user state. | 
 |   if (summary->termination_type == USER_ABORT || | 
 |       summary->termination_type == NUMERICAL_FAILURE) { | 
 |     return; | 
 |   } | 
 |  | 
 |   time_t post_process_start_time = time(NULL); | 
 |  | 
 |   // Push the contiguous optimized parameters back to the user's parameters. | 
 |   reduced_program->StateVectorToParameterBlocks(parameters.data()); | 
 |   reduced_program->CopyParameterBlockStateToUserState(); | 
 |  | 
 |   // Evaluate the final cost, residual vector and the jacobian | 
 |   // matrix if requested by the user. | 
 |   Evaluator::Evaluate( | 
 |       original_program, | 
 |       options.num_threads, | 
 |       &summary->final_cost, | 
 |       options.return_final_residuals ? &summary->final_residuals : NULL, | 
 |       options.return_final_gradient ? &summary->final_gradient : NULL, | 
 |       options.return_final_jacobian ? &summary->final_jacobian : NULL); | 
 |  | 
 |   // Ensure the program state is set to the user parameters on the way out. | 
 |   original_program->SetParameterBlockStatePtrsToUserStatePtrs(); | 
 |   // Stick a fork in it, we're done. | 
 |   summary->postprocessor_time_in_seconds = time(NULL) - post_process_start_time; | 
 | } | 
 |  | 
 | // Strips varying parameters and residuals, maintaining order, and updating | 
 | // num_eliminate_blocks. | 
 | bool SolverImpl::RemoveFixedBlocksFromProgram(Program* program, | 
 |                                               int* num_eliminate_blocks, | 
 |                                               double* fixed_cost, | 
 |                                               string* error) { | 
 |   int original_num_eliminate_blocks = *num_eliminate_blocks; | 
 |   vector<ParameterBlock*>* parameter_blocks = | 
 |       program->mutable_parameter_blocks(); | 
 |  | 
 |   scoped_array<double> residual_block_evaluate_scratch; | 
 |   if (fixed_cost != NULL) { | 
 |     residual_block_evaluate_scratch.reset( | 
 |         new double[program->MaxScratchDoublesNeededForEvaluate()]); | 
 |     *fixed_cost = 0.0; | 
 |   } | 
 |  | 
 |   // Mark all the parameters as unused. Abuse the index member of the parameter | 
 |   // blocks for the marking. | 
 |   for (int i = 0; i < parameter_blocks->size(); ++i) { | 
 |     (*parameter_blocks)[i]->set_index(-1); | 
 |   } | 
 |  | 
 |   // Filter out residual that have all-constant parameters, and mark all the | 
 |   // parameter blocks that appear in residuals. | 
 |   { | 
 |     vector<ResidualBlock*>* residual_blocks = | 
 |         program->mutable_residual_blocks(); | 
 |     int j = 0; | 
 |     for (int i = 0; i < residual_blocks->size(); ++i) { | 
 |       ResidualBlock* residual_block = (*residual_blocks)[i]; | 
 |       int num_parameter_blocks = residual_block->NumParameterBlocks(); | 
 |  | 
 |       // Determine if the residual block is fixed, and also mark varying | 
 |       // parameters that appear in the residual block. | 
 |       bool all_constant = true; | 
 |       for (int k = 0; k < num_parameter_blocks; k++) { | 
 |         ParameterBlock* parameter_block = residual_block->parameter_blocks()[k]; | 
 |         if (!parameter_block->IsConstant()) { | 
 |           all_constant = false; | 
 |           parameter_block->set_index(1); | 
 |         } | 
 |       } | 
 |  | 
 |       if (!all_constant) { | 
 |         (*residual_blocks)[j++] = (*residual_blocks)[i]; | 
 |       } else if (fixed_cost != NULL) { | 
 |         // The residual is constant and will be removed, so its cost is | 
 |         // added to the variable fixed_cost. | 
 |         double cost = 0.0; | 
 |         if (!residual_block->Evaluate( | 
 |               &cost, NULL, NULL, residual_block_evaluate_scratch.get())) { | 
 |           *error = StringPrintf("Evaluation of the residual %d failed during " | 
 |                                 "removal of fixed residual blocks.", i); | 
 |           return false; | 
 |         } | 
 |         *fixed_cost += cost; | 
 |       } | 
 |     } | 
 |     residual_blocks->resize(j); | 
 |   } | 
 |  | 
 |   // Filter out unused or fixed parameter blocks, and update | 
 |   // num_eliminate_blocks as necessary. | 
 |   { | 
 |     vector<ParameterBlock*>* parameter_blocks = | 
 |         program->mutable_parameter_blocks(); | 
 |     int j = 0; | 
 |     for (int i = 0; i < parameter_blocks->size(); ++i) { | 
 |       ParameterBlock* parameter_block = (*parameter_blocks)[i]; | 
 |       if (parameter_block->index() == 1) { | 
 |         (*parameter_blocks)[j++] = parameter_block; | 
 |       } else if (i < original_num_eliminate_blocks) { | 
 |         (*num_eliminate_blocks)--; | 
 |       } | 
 |     } | 
 |     parameter_blocks->resize(j); | 
 |   } | 
 |  | 
 |   CHECK(((program->NumResidualBlocks() == 0) && | 
 |          (program->NumParameterBlocks() == 0)) || | 
 |         ((program->NumResidualBlocks() != 0) && | 
 |          (program->NumParameterBlocks() != 0))) | 
 |       << "Congratulations, you found a bug in Ceres. Please report it."; | 
 |   return true; | 
 | } | 
 |  | 
 | Program* SolverImpl::CreateReducedProgram(Solver::Options* options, | 
 |                                           ProblemImpl* problem_impl, | 
 |                                           double* fixed_cost, | 
 |                                           string* error) { | 
 |   Program* original_program = problem_impl->mutable_program(); | 
 |   scoped_ptr<Program> transformed_program(new Program(*original_program)); | 
 |  | 
 |   if (options->ordering_type == USER && | 
 |       !ApplyUserOrdering(*problem_impl, | 
 |                          options->ordering, | 
 |                          transformed_program.get(), | 
 |                          error)) { | 
 |     return NULL; | 
 |   } | 
 |  | 
 |   if (options->ordering_type == SCHUR && options->num_eliminate_blocks != 0) { | 
 |     *error = "Can't specify SCHUR ordering and num_eliminate_blocks " | 
 |         "at the same time; SCHUR ordering determines " | 
 |         "num_eliminate_blocks automatically."; | 
 |     return NULL; | 
 |   } | 
 |  | 
 |   if (options->ordering_type == SCHUR && options->ordering.size() != 0) { | 
 |     *error = "Can't specify SCHUR ordering type and the ordering " | 
 |         "vector at the same time; SCHUR ordering determines " | 
 |         "a suitable parameter ordering automatically."; | 
 |     return NULL; | 
 |   } | 
 |  | 
 |   int num_eliminate_blocks = options->num_eliminate_blocks; | 
 |  | 
 |   if (!RemoveFixedBlocksFromProgram(transformed_program.get(), | 
 |                                     &num_eliminate_blocks, | 
 |                                     fixed_cost, | 
 |                                     error)) { | 
 |     return NULL; | 
 |   } | 
 |  | 
 |   if (transformed_program->NumParameterBlocks() == 0) { | 
 |     LOG(WARNING) << "No varying parameter blocks to optimize; " | 
 |                  << "bailing early."; | 
 |     return transformed_program.release(); | 
 |   } | 
 |  | 
 |   if (options->ordering_type == SCHUR) { | 
 |     vector<ParameterBlock*> schur_ordering; | 
 |     num_eliminate_blocks = ComputeSchurOrdering(*transformed_program, | 
 |                                                 &schur_ordering); | 
 |     CHECK_EQ(schur_ordering.size(), transformed_program->NumParameterBlocks()) | 
 |         << "Congratulations, you found a Ceres bug! Please report this error " | 
 |         << "to the developers."; | 
 |  | 
 |     // Replace the transformed program's ordering with the schur ordering. | 
 |     swap(*transformed_program->mutable_parameter_blocks(), schur_ordering); | 
 |   } | 
 |   options->num_eliminate_blocks = num_eliminate_blocks; | 
 |   CHECK_GE(options->num_eliminate_blocks, 0) | 
 |       << "Congratulations, you found a Ceres bug! Please report this error " | 
 |       << "to the developers."; | 
 |  | 
 |   // Since the transformed program is the "active" program, and it is mutated, | 
 |   // update the parameter offsets and indices. | 
 |   transformed_program->SetParameterOffsetsAndIndex(); | 
 |   return transformed_program.release(); | 
 | } | 
 |  | 
 | LinearSolver* SolverImpl::CreateLinearSolver(Solver::Options* options, | 
 |                                              string* error) { | 
 |   if (options->trust_region_strategy_type == DOGLEG) { | 
 |     if (options->linear_solver_type == ITERATIVE_SCHUR || | 
 |         options->linear_solver_type == CGNR) { | 
 |       *error = "DOGLEG only supports exact factorization based linear " | 
 |                "solvers. If you want to use an iterative solver please " | 
 |                "use LEVENBERG_MARQUARDT as the trust_region_strategy_type"; | 
 |       return NULL; | 
 |     } | 
 |   } | 
 |  | 
 | #ifdef CERES_NO_SUITESPARSE | 
 |   if (options->linear_solver_type == SPARSE_NORMAL_CHOLESKY && | 
 |       options->sparse_linear_algebra_library == SUITE_SPARSE) { | 
 |     *error = "Can't use SPARSE_NORMAL_CHOLESKY with SUITESPARSE because " | 
 |              "SuiteSparse was not enabled when Ceres was built."; | 
 |     return NULL; | 
 |   } | 
 | #endif | 
 |  | 
 | #ifdef CERES_NO_CXSPARSE | 
 |   if (options->linear_solver_type == SPARSE_NORMAL_CHOLESKY && | 
 |       options->sparse_linear_algebra_library == CX_SPARSE) { | 
 |     *error = "Can't use SPARSE_NORMAL_CHOLESKY with CXSPARSE because " | 
 |              "CXSparse was not enabled when Ceres was built."; | 
 |     return NULL; | 
 |   } | 
 | #endif | 
 |  | 
 |  | 
 |   if (options->linear_solver_max_num_iterations <= 0) { | 
 |     *error = "Solver::Options::linear_solver_max_num_iterations is 0."; | 
 |     return NULL; | 
 |   } | 
 |   if (options->linear_solver_min_num_iterations <= 0) { | 
 |     *error = "Solver::Options::linear_solver_min_num_iterations is 0."; | 
 |     return NULL; | 
 |   } | 
 |   if (options->linear_solver_min_num_iterations > | 
 |       options->linear_solver_max_num_iterations) { | 
 |     *error = "Solver::Options::linear_solver_min_num_iterations > " | 
 |         "Solver::Options::linear_solver_max_num_iterations."; | 
 |     return NULL; | 
 |   } | 
 |  | 
 |   LinearSolver::Options linear_solver_options; | 
 |   linear_solver_options.min_num_iterations = | 
 |         options->linear_solver_min_num_iterations; | 
 |   linear_solver_options.max_num_iterations = | 
 |       options->linear_solver_max_num_iterations; | 
 |   linear_solver_options.type = options->linear_solver_type; | 
 |   linear_solver_options.preconditioner_type = options->preconditioner_type; | 
 |   linear_solver_options.sparse_linear_algebra_library = | 
 |       options->sparse_linear_algebra_library; | 
 |   linear_solver_options.use_block_amd = options->use_block_amd; | 
 |  | 
 | #ifdef CERES_NO_SUITESPARSE | 
 |   if (linear_solver_options.preconditioner_type == SCHUR_JACOBI) { | 
 |     *error =  "SCHUR_JACOBI preconditioner not suppored. Please build Ceres " | 
 |         "with SuiteSparse support."; | 
 |     return NULL; | 
 |   } | 
 |  | 
 |   if (linear_solver_options.preconditioner_type == CLUSTER_JACOBI) { | 
 |     *error =  "CLUSTER_JACOBI preconditioner not suppored. Please build Ceres " | 
 |         "with SuiteSparse support."; | 
 |     return NULL; | 
 |   } | 
 |  | 
 |   if (linear_solver_options.preconditioner_type == CLUSTER_TRIDIAGONAL) { | 
 |     *error =  "CLUSTER_TRIDIAGONAL preconditioner not suppored. Please build " | 
 |         "Ceres with SuiteSparse support."; | 
 |     return NULL; | 
 |   } | 
 | #endif | 
 |  | 
 |   linear_solver_options.num_threads = options->num_linear_solver_threads; | 
 |   linear_solver_options.num_eliminate_blocks = | 
 |       options->num_eliminate_blocks; | 
 |  | 
 |   if ((linear_solver_options.num_eliminate_blocks == 0) && | 
 |       IsSchurType(linear_solver_options.type)) { | 
 | #if defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CXSPARSE) | 
 |     LOG(INFO) << "No elimination block remaining switching to DENSE_QR."; | 
 |     linear_solver_options.type = DENSE_QR; | 
 | #else | 
 |     LOG(INFO) << "No elimination block remaining " | 
 |               << "switching to SPARSE_NORMAL_CHOLESKY."; | 
 |     linear_solver_options.type = SPARSE_NORMAL_CHOLESKY; | 
 | #endif | 
 |   } | 
 |  | 
 | #if defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CXSPARSE) | 
 |   if (linear_solver_options.type == SPARSE_SCHUR) { | 
 |     *error = "Can't use SPARSE_SCHUR because neither SuiteSparse nor" | 
 |              "CXSparse was enabled when Ceres was compiled."; | 
 |     return NULL; | 
 |   } | 
 | #endif | 
 |  | 
 |   // The matrix used for storing the dense Schur complement has a | 
 |   // single lock guarding the whole matrix. Running the | 
 |   // SchurComplementSolver with multiple threads leads to maximum | 
 |   // contention and slowdown. If the problem is large enough to | 
 |   // benefit from a multithreaded schur eliminator, you should be | 
 |   // using a SPARSE_SCHUR solver anyways. | 
 |   if ((linear_solver_options.num_threads > 1) && | 
 |       (linear_solver_options.type == DENSE_SCHUR)) { | 
 |     LOG(WARNING) << "Warning: Solver::Options::num_linear_solver_threads = " | 
 |                  << options->num_linear_solver_threads | 
 |                  << " with DENSE_SCHUR will result in poor performance; " | 
 |                  << "switching to single-threaded."; | 
 |     linear_solver_options.num_threads = 1; | 
 |   } | 
 |  | 
 |   options->linear_solver_type = linear_solver_options.type; | 
 |   options->num_linear_solver_threads = linear_solver_options.num_threads; | 
 |  | 
 |   return LinearSolver::Create(linear_solver_options); | 
 | } | 
 |  | 
 | bool SolverImpl::ApplyUserOrdering(const ProblemImpl& problem_impl, | 
 |                                    vector<double*>& ordering, | 
 |                                    Program* program, | 
 |                                    string* error) { | 
 |   if (ordering.size() != program->NumParameterBlocks()) { | 
 |     *error = StringPrintf("User specified ordering does not have the same " | 
 |                           "number of parameters as the problem. The problem" | 
 |                           "has %d blocks while the ordering has %ld blocks.", | 
 |                           program->NumParameterBlocks(), | 
 |                           ordering.size()); | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Ensure that there are no duplicates in the user's ordering. | 
 |   { | 
 |     vector<double*> ordering_copy(ordering); | 
 |     sort(ordering_copy.begin(), ordering_copy.end()); | 
 |     if (unique(ordering_copy.begin(), ordering_copy.end()) | 
 |         != ordering_copy.end()) { | 
 |       *error = "User specified ordering contains duplicates."; | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   vector<ParameterBlock*>* parameter_blocks = | 
 |       program->mutable_parameter_blocks(); | 
 |  | 
 |   fill(parameter_blocks->begin(), | 
 |        parameter_blocks->end(), | 
 |        static_cast<ParameterBlock*>(NULL)); | 
 |  | 
 |   const ProblemImpl::ParameterMap& parameter_map = problem_impl.parameter_map(); | 
 |   for (int i = 0; i < ordering.size(); ++i) { | 
 |     ProblemImpl::ParameterMap::const_iterator it = | 
 |         parameter_map.find(ordering[i]); | 
 |     if (it == parameter_map.end()) { | 
 |       *error = StringPrintf("User specified ordering contains a pointer " | 
 |                             "to a double that is not a parameter block in the " | 
 |                             "problem. The invalid double is at position %d " | 
 |                             " in options.ordering.", i); | 
 |       return false; | 
 |     } | 
 |     (*parameter_blocks)[i] = it->second; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | // Find the minimum index of any parameter block to the given residual. | 
 | // Parameter blocks that have indices greater than num_eliminate_blocks are | 
 | // considered to have an index equal to num_eliminate_blocks. | 
 | int MinParameterBlock(const ResidualBlock* residual_block, | 
 |                       int num_eliminate_blocks) { | 
 |   int min_parameter_block_position = num_eliminate_blocks; | 
 |   for (int i = 0; i < residual_block->NumParameterBlocks(); ++i) { | 
 |     ParameterBlock* parameter_block = residual_block->parameter_blocks()[i]; | 
 |     if (!parameter_block->IsConstant()) { | 
 |       CHECK_NE(parameter_block->index(), -1) | 
 |           << "Did you forget to call Program::SetParameterOffsetsAndIndex()? " | 
 |           << "This is a Ceres bug; please contact the developers!"; | 
 |       min_parameter_block_position = std::min(parameter_block->index(), | 
 |                                               min_parameter_block_position); | 
 |     } | 
 |   } | 
 |   return min_parameter_block_position; | 
 | } | 
 |  | 
 | // Reorder the residuals for program, if necessary, so that the residuals | 
 | // involving each E block occur together. This is a necessary condition for the | 
 | // Schur eliminator, which works on these "row blocks" in the jacobian. | 
 | bool SolverImpl::MaybeReorderResidualBlocks(const Solver::Options& options, | 
 |                                             Program* program, | 
 |                                             string* error) { | 
 |   // Only Schur types require the lexicographic reordering. | 
 |   if (!IsSchurType(options.linear_solver_type)) { | 
 |     return true; | 
 |   } | 
 |  | 
 |   CHECK_NE(0, options.num_eliminate_blocks) | 
 |         << "Congratulations, you found a Ceres bug! Please report this error " | 
 |         << "to the developers."; | 
 |  | 
 |   // Create a histogram of the number of residuals for each E block. There is an | 
 |   // extra bucket at the end to catch all non-eliminated F blocks. | 
 |   vector<int> residual_blocks_per_e_block(options.num_eliminate_blocks + 1); | 
 |   vector<ResidualBlock*>* residual_blocks = program->mutable_residual_blocks(); | 
 |   vector<int> min_position_per_residual(residual_blocks->size()); | 
 |   for (int i = 0; i < residual_blocks->size(); ++i) { | 
 |     ResidualBlock* residual_block = (*residual_blocks)[i]; | 
 |     int position = MinParameterBlock(residual_block, | 
 |                                      options.num_eliminate_blocks); | 
 |     min_position_per_residual[i] = position; | 
 |     DCHECK_LE(position, options.num_eliminate_blocks); | 
 |     residual_blocks_per_e_block[position]++; | 
 |   } | 
 |  | 
 |   // Run a cumulative sum on the histogram, to obtain offsets to the start of | 
 |   // each histogram bucket (where each bucket is for the residuals for that | 
 |   // E-block). | 
 |   vector<int> offsets(options.num_eliminate_blocks + 1); | 
 |   std::partial_sum(residual_blocks_per_e_block.begin(), | 
 |                    residual_blocks_per_e_block.end(), | 
 |                    offsets.begin()); | 
 |   CHECK_EQ(offsets.back(), residual_blocks->size()) | 
 |       << "Congratulations, you found a Ceres bug! Please report this error " | 
 |       << "to the developers."; | 
 |  | 
 |   CHECK(find(residual_blocks_per_e_block.begin(), | 
 |              residual_blocks_per_e_block.end() - 1, 0) != | 
 |         residual_blocks_per_e_block.end()) | 
 |       << "Congratulations, you found a Ceres bug! Please report this error " | 
 |       << "to the developers."; | 
 |  | 
 |   // Fill in each bucket with the residual blocks for its corresponding E block. | 
 |   // Each bucket is individually filled from the back of the bucket to the front | 
 |   // of the bucket. The filling order among the buckets is dictated by the | 
 |   // residual blocks. This loop uses the offsets as counters; subtracting one | 
 |   // from each offset as a residual block is placed in the bucket. When the | 
 |   // filling is finished, the offset pointerts should have shifted down one | 
 |   // entry (this is verified below). | 
 |   vector<ResidualBlock*> reordered_residual_blocks( | 
 |       (*residual_blocks).size(), static_cast<ResidualBlock*>(NULL)); | 
 |   for (int i = 0; i < residual_blocks->size(); ++i) { | 
 |     int bucket = min_position_per_residual[i]; | 
 |  | 
 |     // Decrement the cursor, which should now point at the next empty position. | 
 |     offsets[bucket]--; | 
 |  | 
 |     // Sanity. | 
 |     CHECK(reordered_residual_blocks[offsets[bucket]] == NULL) | 
 |         << "Congratulations, you found a Ceres bug! Please report this error " | 
 |         << "to the developers."; | 
 |  | 
 |     reordered_residual_blocks[offsets[bucket]] = (*residual_blocks)[i]; | 
 |   } | 
 |  | 
 |   // Sanity check #1: The difference in bucket offsets should match the | 
 |   // histogram sizes. | 
 |   for (int i = 0; i < options.num_eliminate_blocks; ++i) { | 
 |     CHECK_EQ(residual_blocks_per_e_block[i], offsets[i + 1] - offsets[i]) | 
 |         << "Congratulations, you found a Ceres bug! Please report this error " | 
 |         << "to the developers."; | 
 |   } | 
 |   // Sanity check #2: No NULL's left behind. | 
 |   for (int i = 0; i < reordered_residual_blocks.size(); ++i) { | 
 |     CHECK(reordered_residual_blocks[i] != NULL) | 
 |         << "Congratulations, you found a Ceres bug! Please report this error " | 
 |         << "to the developers."; | 
 |   } | 
 |  | 
 |   // Now that the residuals are collected by E block, swap them in place. | 
 |   swap(*program->mutable_residual_blocks(), reordered_residual_blocks); | 
 |   return true; | 
 | } | 
 |  | 
 | Evaluator* SolverImpl::CreateEvaluator(const Solver::Options& options, | 
 |                                        Program* program, | 
 |                                        string* error) { | 
 |   Evaluator::Options evaluator_options; | 
 |   evaluator_options.linear_solver_type = options.linear_solver_type; | 
 |   evaluator_options.num_eliminate_blocks = options.num_eliminate_blocks; | 
 |   evaluator_options.num_threads = options.num_threads; | 
 |   return Evaluator::Create(evaluator_options, program, error); | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |