|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2023 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: keir@google.com (Keir Mierle) | 
|  | // | 
|  | // End-to-end bundle adjustment test utilities for Ceres. This base is used in | 
|  | // the generated bundle adjustment test binaries. The reason to split the | 
|  | // bundle tests into separate binaries is so the tests can get parallelized. | 
|  |  | 
|  | #include <cmath> | 
|  | #include <cstdio> | 
|  | #include <cstdlib> | 
|  | #include <string> | 
|  |  | 
|  | #include "ceres/autodiff_cost_function.h" | 
|  | #include "ceres/internal/export.h" | 
|  | #include "ceres/ordered_groups.h" | 
|  | #include "ceres/problem.h" | 
|  | #include "ceres/rotation.h" | 
|  | #include "ceres/solver.h" | 
|  | #include "ceres/stringprintf.h" | 
|  | #include "ceres/test_util.h" | 
|  | #include "ceres/types.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | const bool kAutomaticOrdering = true; | 
|  | const bool kUserOrdering = false; | 
|  |  | 
|  | // This class implements the SystemTestProblem interface and provides | 
|  | // access to a bundle adjustment problem. It is based on | 
|  | // examples/bundle_adjustment_example.cc. Currently a small 16 camera | 
|  | // problem is hard coded in the constructor. | 
|  | class BundleAdjustmentProblem { | 
|  | public: | 
|  | BundleAdjustmentProblem(const std::string input_file) { | 
|  | ReadData(input_file); | 
|  | BuildProblem(); | 
|  | } | 
|  | BundleAdjustmentProblem() { | 
|  | const std::string input_file = | 
|  | TestFileAbsolutePath("problem-16-22106-pre.txt"); | 
|  | ReadData(input_file); | 
|  | BuildProblem(); | 
|  | } | 
|  |  | 
|  | ~BundleAdjustmentProblem() { | 
|  | delete[] point_index_; | 
|  | delete[] camera_index_; | 
|  | delete[] observations_; | 
|  | delete[] parameters_; | 
|  | } | 
|  |  | 
|  | Problem* mutable_problem() { return &problem_; } | 
|  | Solver::Options* mutable_solver_options() { return &options_; } | 
|  |  | 
|  | // clang-format off | 
|  | int num_cameras()                const { return num_cameras_; } | 
|  | int num_points()                 const { return num_points_; } | 
|  | int num_observations()           const { return num_observations_; } | 
|  | const int* point_index()         const { return point_index_; } | 
|  | const int* camera_index()        const { return camera_index_; } | 
|  | const double* observations()     const { return observations_; } | 
|  | double* mutable_cameras()              { return parameters_; } | 
|  | double* mutable_points()               { return parameters_ + 9 * num_cameras_; } | 
|  | const Solver::Options& options() const { return options_; } | 
|  | // clang-format on | 
|  |  | 
|  | static double kResidualTolerance; | 
|  |  | 
|  | private: | 
|  | void ReadData(const std::string& filename) { | 
|  | FILE* fptr = fopen(filename.c_str(), "r"); | 
|  |  | 
|  | if (!fptr) { | 
|  | LOG(FATAL) << "File Error: unable to open file " << filename; | 
|  | } | 
|  |  | 
|  | // This will die horribly on invalid files. Them's the breaks. | 
|  | FscanfOrDie(fptr, "%d", &num_cameras_); | 
|  | FscanfOrDie(fptr, "%d", &num_points_); | 
|  | FscanfOrDie(fptr, "%d", &num_observations_); | 
|  |  | 
|  | VLOG(1) << "Header: " << num_cameras_ << " " << num_points_ << " " | 
|  | << num_observations_; | 
|  |  | 
|  | point_index_ = new int[num_observations_]; | 
|  | camera_index_ = new int[num_observations_]; | 
|  | observations_ = new double[2 * num_observations_]; | 
|  |  | 
|  | num_parameters_ = 9 * num_cameras_ + 3 * num_points_; | 
|  | parameters_ = new double[num_parameters_]; | 
|  |  | 
|  | for (int i = 0; i < num_observations_; ++i) { | 
|  | FscanfOrDie(fptr, "%d", camera_index_ + i); | 
|  | FscanfOrDie(fptr, "%d", point_index_ + i); | 
|  | for (int j = 0; j < 2; ++j) { | 
|  | FscanfOrDie(fptr, "%lf", observations_ + 2 * i + j); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < num_parameters_; ++i) { | 
|  | FscanfOrDie(fptr, "%lf", parameters_ + i); | 
|  | } | 
|  |  | 
|  | fclose(fptr); | 
|  | } | 
|  |  | 
|  | void BuildProblem() { | 
|  | double* points = mutable_points(); | 
|  | double* cameras = mutable_cameras(); | 
|  |  | 
|  | for (int i = 0; i < num_observations(); ++i) { | 
|  | // Each Residual block takes a point and a camera as input and | 
|  | // outputs a 2 dimensional residual. | 
|  | CostFunction* cost_function = | 
|  | new AutoDiffCostFunction<BundlerResidual, 2, 9, 3>( | 
|  | new BundlerResidual(observations_[2 * i + 0], | 
|  | observations_[2 * i + 1])); | 
|  |  | 
|  | // Each observation corresponds to a pair of a camera and a point | 
|  | // which are identified by camera_index()[i] and | 
|  | // point_index()[i] respectively. | 
|  | double* camera = cameras + 9 * camera_index_[i]; | 
|  | double* point = points + 3 * point_index()[i]; | 
|  | problem_.AddResidualBlock(cost_function, nullptr, camera, point); | 
|  | } | 
|  |  | 
|  | options_.linear_solver_ordering = | 
|  | std::make_shared<ParameterBlockOrdering>(); | 
|  |  | 
|  | // The points come before the cameras. | 
|  | for (int i = 0; i < num_points_; ++i) { | 
|  | options_.linear_solver_ordering->AddElementToGroup(points + 3 * i, 0); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < num_cameras_; ++i) { | 
|  | options_.linear_solver_ordering->AddElementToGroup(cameras + 9 * i, 1); | 
|  | } | 
|  |  | 
|  | options_.linear_solver_type = DENSE_SCHUR; | 
|  | options_.max_num_iterations = 25; | 
|  | options_.function_tolerance = 1e-10; | 
|  | options_.gradient_tolerance = 1e-10; | 
|  | options_.parameter_tolerance = 1e-10; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void FscanfOrDie(FILE* fptr, const char* format, T* value) { | 
|  | int num_scanned = fscanf(fptr, format, value); | 
|  | if (num_scanned != 1) { | 
|  | LOG(FATAL) << "Invalid UW data file."; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Templated pinhole camera model.  The camera is parameterized | 
|  | // using 9 parameters. 3 for rotation, 3 for translation, 1 for | 
|  | // focal length and 2 for radial distortion. The principal point is | 
|  | // not modeled (i.e. it is assumed to be located at the image | 
|  | // center). | 
|  | struct BundlerResidual { | 
|  | // (u, v): the position of the observation with respect to the image | 
|  | // center point. | 
|  | BundlerResidual(double u, double v) : u(u), v(v) {} | 
|  |  | 
|  | template <typename T> | 
|  | bool operator()(const T* const camera, | 
|  | const T* const point, | 
|  | T* residuals) const { | 
|  | T p[3]; | 
|  | AngleAxisRotatePoint(camera, point, p); | 
|  |  | 
|  | // Add the translation vector | 
|  | p[0] += camera[3]; | 
|  | p[1] += camera[4]; | 
|  | p[2] += camera[5]; | 
|  |  | 
|  | const T& focal = camera[6]; | 
|  | const T& l1 = camera[7]; | 
|  | const T& l2 = camera[8]; | 
|  |  | 
|  | // Compute the center of distortion.  The sign change comes from | 
|  | // the camera model that Noah Snavely's Bundler assumes, whereby | 
|  | // the camera coordinate system has a negative z axis. | 
|  | T xp = -focal * p[0] / p[2]; | 
|  | T yp = -focal * p[1] / p[2]; | 
|  |  | 
|  | // Apply second and fourth order radial distortion. | 
|  | T r2 = xp * xp + yp * yp; | 
|  | T distortion = T(1.0) + r2 * (l1 + l2 * r2); | 
|  |  | 
|  | residuals[0] = distortion * xp - u; | 
|  | residuals[1] = distortion * yp - v; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | double u; | 
|  | double v; | 
|  | }; | 
|  |  | 
|  | Problem problem_; | 
|  | Solver::Options options_; | 
|  |  | 
|  | int num_cameras_; | 
|  | int num_points_; | 
|  | int num_observations_; | 
|  | int num_parameters_; | 
|  |  | 
|  | int* point_index_; | 
|  | int* camera_index_; | 
|  | double* observations_; | 
|  | // The parameter vector is laid out as follows | 
|  | // [camera_1, ..., camera_n, point_1, ..., point_m] | 
|  | double* parameters_; | 
|  | }; | 
|  |  | 
|  | double BundleAdjustmentProblem::kResidualTolerance = 1e-4; | 
|  | using BundleAdjustmentTest = SystemTest<BundleAdjustmentProblem>; | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |