| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2023 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/compressed_row_sparse_matrix.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <functional> | 
 | #include <memory> | 
 | #include <numeric> | 
 | #include <random> | 
 | #include <vector> | 
 |  | 
 | #include "ceres/context_impl.h" | 
 | #include "ceres/crs_matrix.h" | 
 | #include "ceres/internal/export.h" | 
 | #include "ceres/parallel_for.h" | 
 | #include "ceres/triplet_sparse_matrix.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | namespace ceres::internal { | 
 | namespace { | 
 |  | 
 | // Helper functor used by the constructor for reordering the contents | 
 | // of a TripletSparseMatrix. This comparator assumes that there are no | 
 | // duplicates in the pair of arrays rows and cols, i.e., there is no | 
 | // indices i and j (not equal to each other) s.t. | 
 | // | 
 | //  rows[i] == rows[j] && cols[i] == cols[j] | 
 | // | 
 | // If this is the case, this functor will not be a StrictWeakOrdering. | 
 | struct RowColLessThan { | 
 |   RowColLessThan(const int* rows, const int* cols) : rows(rows), cols(cols) {} | 
 |  | 
 |   bool operator()(const int x, const int y) const { | 
 |     if (rows[x] == rows[y]) { | 
 |       return (cols[x] < cols[y]); | 
 |     } | 
 |     return (rows[x] < rows[y]); | 
 |   } | 
 |  | 
 |   const int* rows; | 
 |   const int* cols; | 
 | }; | 
 |  | 
 | void TransposeForCompressedRowSparseStructure(const int num_rows, | 
 |                                               const int num_cols, | 
 |                                               const int num_nonzeros, | 
 |                                               const int* rows, | 
 |                                               const int* cols, | 
 |                                               const double* values, | 
 |                                               int* transpose_rows, | 
 |                                               int* transpose_cols, | 
 |                                               double* transpose_values) { | 
 |   // Explicitly zero out transpose_rows. | 
 |   std::fill(transpose_rows, transpose_rows + num_cols + 1, 0); | 
 |  | 
 |   // Count the number of entries in each column of the original matrix | 
 |   // and assign to transpose_rows[col + 1]. | 
 |   for (int idx = 0; idx < num_nonzeros; ++idx) { | 
 |     ++transpose_rows[cols[idx] + 1]; | 
 |   } | 
 |  | 
 |   // Compute the starting position for each row in the transpose by | 
 |   // computing the cumulative sum of the entries of transpose_rows. | 
 |   for (int i = 1; i < num_cols + 1; ++i) { | 
 |     transpose_rows[i] += transpose_rows[i - 1]; | 
 |   } | 
 |  | 
 |   // Populate transpose_cols and (optionally) transpose_values by | 
 |   // walking the entries of the source matrices. For each entry that | 
 |   // is added, the value of transpose_row is incremented allowing us | 
 |   // to keep track of where the next entry for that row should go. | 
 |   // | 
 |   // As a result transpose_row is shifted to the left by one entry. | 
 |   for (int r = 0; r < num_rows; ++r) { | 
 |     for (int idx = rows[r]; idx < rows[r + 1]; ++idx) { | 
 |       const int c = cols[idx]; | 
 |       const int transpose_idx = transpose_rows[c]++; | 
 |       transpose_cols[transpose_idx] = r; | 
 |       if (values != nullptr && transpose_values != nullptr) { | 
 |         transpose_values[transpose_idx] = values[idx]; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // This loop undoes the left shift to transpose_rows introduced by | 
 |   // the previous loop. | 
 |   for (int i = num_cols - 1; i > 0; --i) { | 
 |     transpose_rows[i] = transpose_rows[i - 1]; | 
 |   } | 
 |   transpose_rows[0] = 0; | 
 | } | 
 |  | 
 | template <class RandomNormalFunctor> | 
 | void AddRandomBlock(const int num_rows, | 
 |                     const int num_cols, | 
 |                     const int row_block_begin, | 
 |                     const int col_block_begin, | 
 |                     RandomNormalFunctor&& randn, | 
 |                     std::vector<int>* rows, | 
 |                     std::vector<int>* cols, | 
 |                     std::vector<double>* values) { | 
 |   for (int r = 0; r < num_rows; ++r) { | 
 |     for (int c = 0; c < num_cols; ++c) { | 
 |       rows->push_back(row_block_begin + r); | 
 |       cols->push_back(col_block_begin + c); | 
 |       values->push_back(randn()); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | template <class RandomNormalFunctor> | 
 | void AddSymmetricRandomBlock(const int num_rows, | 
 |                              const int row_block_begin, | 
 |                              RandomNormalFunctor&& randn, | 
 |                              std::vector<int>* rows, | 
 |                              std::vector<int>* cols, | 
 |                              std::vector<double>* values) { | 
 |   for (int r = 0; r < num_rows; ++r) { | 
 |     for (int c = r; c < num_rows; ++c) { | 
 |       const double v = randn(); | 
 |       rows->push_back(row_block_begin + r); | 
 |       cols->push_back(row_block_begin + c); | 
 |       values->push_back(v); | 
 |       if (r != c) { | 
 |         rows->push_back(row_block_begin + c); | 
 |         cols->push_back(row_block_begin + r); | 
 |         values->push_back(v); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace | 
 |  | 
 | // This constructor gives you a semi-initialized CompressedRowSparseMatrix. | 
 | CompressedRowSparseMatrix::CompressedRowSparseMatrix(int num_rows, | 
 |                                                      int num_cols, | 
 |                                                      int max_num_nonzeros) { | 
 |   num_rows_ = num_rows; | 
 |   num_cols_ = num_cols; | 
 |   storage_type_ = StorageType::UNSYMMETRIC; | 
 |   rows_.resize(num_rows + 1, 0); | 
 |   cols_.resize(max_num_nonzeros, 0); | 
 |   values_.resize(max_num_nonzeros, 0.0); | 
 |  | 
 |   VLOG(1) << "# of rows: " << num_rows_ << " # of columns: " << num_cols_ | 
 |           << " max_num_nonzeros: " << cols_.size() << ". Allocating " | 
 |           << (num_rows_ + 1) * sizeof(int) +     // NOLINT | 
 |                  cols_.size() * sizeof(int) +    // NOLINT | 
 |                  cols_.size() * sizeof(double);  // NOLINT | 
 | } | 
 |  | 
 | std::unique_ptr<CompressedRowSparseMatrix> | 
 | CompressedRowSparseMatrix::FromTripletSparseMatrix( | 
 |     const TripletSparseMatrix& input) { | 
 |   return CompressedRowSparseMatrix::FromTripletSparseMatrix(input, false); | 
 | } | 
 |  | 
 | std::unique_ptr<CompressedRowSparseMatrix> | 
 | CompressedRowSparseMatrix::FromTripletSparseMatrixTransposed( | 
 |     const TripletSparseMatrix& input) { | 
 |   return CompressedRowSparseMatrix::FromTripletSparseMatrix(input, true); | 
 | } | 
 |  | 
 | std::unique_ptr<CompressedRowSparseMatrix> | 
 | CompressedRowSparseMatrix::FromTripletSparseMatrix( | 
 |     const TripletSparseMatrix& input, bool transpose) { | 
 |   int num_rows = input.num_rows(); | 
 |   int num_cols = input.num_cols(); | 
 |   const int* rows = input.rows(); | 
 |   const int* cols = input.cols(); | 
 |   const double* values = input.values(); | 
 |  | 
 |   if (transpose) { | 
 |     std::swap(num_rows, num_cols); | 
 |     std::swap(rows, cols); | 
 |   } | 
 |  | 
 |   // index is the list of indices into the TripletSparseMatrix input. | 
 |   std::vector<int> index(input.num_nonzeros(), 0); | 
 |   for (int i = 0; i < input.num_nonzeros(); ++i) { | 
 |     index[i] = i; | 
 |   } | 
 |  | 
 |   // Sort index such that the entries of m are ordered by row and ties | 
 |   // are broken by column. | 
 |   std::sort(index.begin(), index.end(), RowColLessThan(rows, cols)); | 
 |  | 
 |   VLOG(1) << "# of rows: " << num_rows << " # of columns: " << num_cols | 
 |           << " num_nonzeros: " << input.num_nonzeros() << ". Allocating " | 
 |           << ((num_rows + 1) * sizeof(int) +           // NOLINT | 
 |               input.num_nonzeros() * sizeof(int) +     // NOLINT | 
 |               input.num_nonzeros() * sizeof(double));  // NOLINT | 
 |  | 
 |   auto output = std::make_unique<CompressedRowSparseMatrix>( | 
 |       num_rows, num_cols, input.num_nonzeros()); | 
 |  | 
 |   if (num_rows == 0) { | 
 |     // No data to copy. | 
 |     return output; | 
 |   } | 
 |  | 
 |   // Copy the contents of the cols and values array in the order given | 
 |   // by index and count the number of entries in each row. | 
 |   int* output_rows = output->mutable_rows(); | 
 |   int* output_cols = output->mutable_cols(); | 
 |   double* output_values = output->mutable_values(); | 
 |  | 
 |   output_rows[0] = 0; | 
 |   for (int i = 0; i < index.size(); ++i) { | 
 |     const int idx = index[i]; | 
 |     ++output_rows[rows[idx] + 1]; | 
 |     output_cols[i] = cols[idx]; | 
 |     output_values[i] = values[idx]; | 
 |   } | 
 |  | 
 |   // Find the cumulative sum of the row counts. | 
 |   for (int i = 1; i < num_rows + 1; ++i) { | 
 |     output_rows[i] += output_rows[i - 1]; | 
 |   } | 
 |  | 
 |   CHECK_EQ(output->num_nonzeros(), input.num_nonzeros()); | 
 |   return output; | 
 | } | 
 |  | 
 | CompressedRowSparseMatrix::CompressedRowSparseMatrix(const double* diagonal, | 
 |                                                      int num_rows) { | 
 |   CHECK(diagonal != nullptr); | 
 |  | 
 |   num_rows_ = num_rows; | 
 |   num_cols_ = num_rows; | 
 |   storage_type_ = StorageType::UNSYMMETRIC; | 
 |   rows_.resize(num_rows + 1); | 
 |   cols_.resize(num_rows); | 
 |   values_.resize(num_rows); | 
 |  | 
 |   rows_[0] = 0; | 
 |   for (int i = 0; i < num_rows_; ++i) { | 
 |     cols_[i] = i; | 
 |     values_[i] = diagonal[i]; | 
 |     rows_[i + 1] = i + 1; | 
 |   } | 
 |  | 
 |   CHECK_EQ(num_nonzeros(), num_rows); | 
 | } | 
 |  | 
 | CompressedRowSparseMatrix::~CompressedRowSparseMatrix() = default; | 
 |  | 
 | void CompressedRowSparseMatrix::SetZero() { | 
 |   std::fill(values_.begin(), values_.end(), 0); | 
 | } | 
 |  | 
 | // TODO(sameeragarwal): Make RightMultiplyAndAccumulate and | 
 | // LeftMultiplyAndAccumulate block-aware for higher performance. | 
 | void CompressedRowSparseMatrix::RightMultiplyAndAccumulate( | 
 |     const double* x, double* y, ContextImpl* context, int num_threads) const { | 
 |   if (storage_type_ != StorageType::UNSYMMETRIC) { | 
 |     RightMultiplyAndAccumulate(x, y); | 
 |     return; | 
 |   } | 
 |  | 
 |   auto values = values_.data(); | 
 |   auto rows = rows_.data(); | 
 |   auto cols = cols_.data(); | 
 |  | 
 |   ParallelFor( | 
 |       context, 0, num_rows_, num_threads, [values, rows, cols, x, y](int row) { | 
 |         for (int idx = rows[row]; idx < rows[row + 1]; ++idx) { | 
 |           const int c = cols[idx]; | 
 |           const double v = values[idx]; | 
 |           y[row] += v * x[c]; | 
 |         } | 
 |       }); | 
 | } | 
 |  | 
 | void CompressedRowSparseMatrix::RightMultiplyAndAccumulate(const double* x, | 
 |                                                            double* y) const { | 
 |   CHECK(x != nullptr); | 
 |   CHECK(y != nullptr); | 
 |  | 
 |   if (storage_type_ == StorageType::UNSYMMETRIC) { | 
 |     RightMultiplyAndAccumulate(x, y, nullptr, 1); | 
 |   } else if (storage_type_ == StorageType::UPPER_TRIANGULAR) { | 
 |     // Because of their block structure, we will have entries that lie | 
 |     // above (below) the diagonal for lower (upper) triangular matrices, | 
 |     // so the loops below need to account for this. | 
 |     for (int r = 0; r < num_rows_; ++r) { | 
 |       int idx = rows_[r]; | 
 |       const int idx_end = rows_[r + 1]; | 
 |  | 
 |       // For upper triangular matrices r <= c, so skip entries with r | 
 |       // > c. | 
 |       while (idx < idx_end && r > cols_[idx]) { | 
 |         ++idx; | 
 |       } | 
 |  | 
 |       for (; idx < idx_end; ++idx) { | 
 |         const int c = cols_[idx]; | 
 |         const double v = values_[idx]; | 
 |         y[r] += v * x[c]; | 
 |         // Since we are only iterating over the upper triangular part | 
 |         // of the matrix, add contributions for the strictly lower | 
 |         // triangular part. | 
 |         if (r != c) { | 
 |           y[c] += v * x[r]; | 
 |         } | 
 |       } | 
 |     } | 
 |   } else if (storage_type_ == StorageType::LOWER_TRIANGULAR) { | 
 |     for (int r = 0; r < num_rows_; ++r) { | 
 |       int idx = rows_[r]; | 
 |       const int idx_end = rows_[r + 1]; | 
 |       // For lower triangular matrices, we only iterate till we are r >= | 
 |       // c. | 
 |       for (; idx < idx_end && r >= cols_[idx]; ++idx) { | 
 |         const int c = cols_[idx]; | 
 |         const double v = values_[idx]; | 
 |         y[r] += v * x[c]; | 
 |         // Since we are only iterating over the lower triangular part | 
 |         // of the matrix, add contributions for the strictly upper | 
 |         // triangular part. | 
 |         if (r != c) { | 
 |           y[c] += v * x[r]; | 
 |         } | 
 |       } | 
 |     } | 
 |   } else { | 
 |     LOG(FATAL) << "Unknown storage type: " << storage_type_; | 
 |   } | 
 | } | 
 |  | 
 | void CompressedRowSparseMatrix::LeftMultiplyAndAccumulate(const double* x, | 
 |                                                           double* y) const { | 
 |   CHECK(x != nullptr); | 
 |   CHECK(y != nullptr); | 
 |  | 
 |   if (storage_type_ == StorageType::UNSYMMETRIC) { | 
 |     for (int r = 0; r < num_rows_; ++r) { | 
 |       for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { | 
 |         y[cols_[idx]] += values_[idx] * x[r]; | 
 |       } | 
 |     } | 
 |   } else { | 
 |     // Since the matrix is symmetric, LeftMultiplyAndAccumulate = | 
 |     // RightMultiplyAndAccumulate. | 
 |     RightMultiplyAndAccumulate(x, y); | 
 |   } | 
 | } | 
 |  | 
 | void CompressedRowSparseMatrix::SquaredColumnNorm(double* x) const { | 
 |   CHECK(x != nullptr); | 
 |  | 
 |   std::fill(x, x + num_cols_, 0.0); | 
 |   if (storage_type_ == StorageType::UNSYMMETRIC) { | 
 |     for (int idx = 0; idx < rows_[num_rows_]; ++idx) { | 
 |       x[cols_[idx]] += values_[idx] * values_[idx]; | 
 |     } | 
 |   } else if (storage_type_ == StorageType::UPPER_TRIANGULAR) { | 
 |     // Because of their block structure, we will have entries that lie | 
 |     // above (below) the diagonal for lower (upper) triangular | 
 |     // matrices, so the loops below need to account for this. | 
 |     for (int r = 0; r < num_rows_; ++r) { | 
 |       int idx = rows_[r]; | 
 |       const int idx_end = rows_[r + 1]; | 
 |  | 
 |       // For upper triangular matrices r <= c, so skip entries with r | 
 |       // > c. | 
 |       while (idx < idx_end && r > cols_[idx]) { | 
 |         ++idx; | 
 |       } | 
 |  | 
 |       for (; idx < idx_end; ++idx) { | 
 |         const int c = cols_[idx]; | 
 |         const double v2 = values_[idx] * values_[idx]; | 
 |         x[c] += v2; | 
 |         // Since we are only iterating over the upper triangular part | 
 |         // of the matrix, add contributions for the strictly lower | 
 |         // triangular part. | 
 |         if (r != c) { | 
 |           x[r] += v2; | 
 |         } | 
 |       } | 
 |     } | 
 |   } else if (storage_type_ == StorageType::LOWER_TRIANGULAR) { | 
 |     for (int r = 0; r < num_rows_; ++r) { | 
 |       int idx = rows_[r]; | 
 |       const int idx_end = rows_[r + 1]; | 
 |       // For lower triangular matrices, we only iterate till we are r >= | 
 |       // c. | 
 |       for (; idx < idx_end && r >= cols_[idx]; ++idx) { | 
 |         const int c = cols_[idx]; | 
 |         const double v2 = values_[idx] * values_[idx]; | 
 |         x[c] += v2; | 
 |         // Since we are only iterating over the lower triangular part | 
 |         // of the matrix, add contributions for the strictly upper | 
 |         // triangular part. | 
 |         if (r != c) { | 
 |           x[r] += v2; | 
 |         } | 
 |       } | 
 |     } | 
 |   } else { | 
 |     LOG(FATAL) << "Unknown storage type: " << storage_type_; | 
 |   } | 
 | } | 
 | void CompressedRowSparseMatrix::ScaleColumns(const double* scale) { | 
 |   CHECK(scale != nullptr); | 
 |  | 
 |   for (int idx = 0; idx < rows_[num_rows_]; ++idx) { | 
 |     values_[idx] *= scale[cols_[idx]]; | 
 |   } | 
 | } | 
 |  | 
 | void CompressedRowSparseMatrix::ToDenseMatrix(Matrix* dense_matrix) const { | 
 |   CHECK(dense_matrix != nullptr); | 
 |   dense_matrix->resize(num_rows_, num_cols_); | 
 |   dense_matrix->setZero(); | 
 |  | 
 |   for (int r = 0; r < num_rows_; ++r) { | 
 |     for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { | 
 |       (*dense_matrix)(r, cols_[idx]) = values_[idx]; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void CompressedRowSparseMatrix::DeleteRows(int delta_rows) { | 
 |   CHECK_GE(delta_rows, 0); | 
 |   CHECK_LE(delta_rows, num_rows_); | 
 |   CHECK_EQ(storage_type_, StorageType::UNSYMMETRIC); | 
 |  | 
 |   num_rows_ -= delta_rows; | 
 |   rows_.resize(num_rows_ + 1); | 
 |  | 
 |   // The rest of the code updates the block information. Immediately | 
 |   // return in case of no block information. | 
 |   if (row_blocks_.empty()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   // Walk the list of row blocks until we reach the new number of rows | 
 |   // and the drop the rest of the row blocks. | 
 |   int num_row_blocks = 0; | 
 |   int num_rows = 0; | 
 |   while (num_row_blocks < row_blocks_.size() && num_rows < num_rows_) { | 
 |     num_rows += row_blocks_[num_row_blocks].size; | 
 |     ++num_row_blocks; | 
 |   } | 
 |  | 
 |   row_blocks_.resize(num_row_blocks); | 
 | } | 
 |  | 
 | void CompressedRowSparseMatrix::AppendRows(const CompressedRowSparseMatrix& m) { | 
 |   CHECK_EQ(storage_type_, StorageType::UNSYMMETRIC); | 
 |   CHECK_EQ(m.num_cols(), num_cols_); | 
 |  | 
 |   CHECK((row_blocks_.empty() && m.row_blocks().empty()) || | 
 |         (!row_blocks_.empty() && !m.row_blocks().empty())) | 
 |       << "Cannot append a matrix with row blocks to one without and vice versa." | 
 |       << "This matrix has : " << row_blocks_.size() << " row blocks." | 
 |       << "The matrix being appended has: " << m.row_blocks().size() | 
 |       << " row blocks."; | 
 |  | 
 |   if (m.num_rows() == 0) { | 
 |     return; | 
 |   } | 
 |  | 
 |   if (cols_.size() < num_nonzeros() + m.num_nonzeros()) { | 
 |     cols_.resize(num_nonzeros() + m.num_nonzeros()); | 
 |     values_.resize(num_nonzeros() + m.num_nonzeros()); | 
 |   } | 
 |  | 
 |   // Copy the contents of m into this matrix. | 
 |   DCHECK_LT(num_nonzeros(), cols_.size()); | 
 |   if (m.num_nonzeros() > 0) { | 
 |     std::copy(m.cols(), m.cols() + m.num_nonzeros(), &cols_[num_nonzeros()]); | 
 |     std::copy( | 
 |         m.values(), m.values() + m.num_nonzeros(), &values_[num_nonzeros()]); | 
 |   } | 
 |  | 
 |   rows_.resize(num_rows_ + m.num_rows() + 1); | 
 |   // new_rows = [rows_, m.row() + rows_[num_rows_]] | 
 |   std::fill(rows_.begin() + num_rows_, | 
 |             rows_.begin() + num_rows_ + m.num_rows() + 1, | 
 |             rows_[num_rows_]); | 
 |  | 
 |   for (int r = 0; r < m.num_rows() + 1; ++r) { | 
 |     rows_[num_rows_ + r] += m.rows()[r]; | 
 |   } | 
 |  | 
 |   num_rows_ += m.num_rows(); | 
 |  | 
 |   // The rest of the code updates the block information. Immediately | 
 |   // return in case of no block information. | 
 |   if (row_blocks_.empty()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   row_blocks_.insert( | 
 |       row_blocks_.end(), m.row_blocks().begin(), m.row_blocks().end()); | 
 | } | 
 |  | 
 | void CompressedRowSparseMatrix::ToTextFile(FILE* file) const { | 
 |   CHECK(file != nullptr); | 
 |   for (int r = 0; r < num_rows_; ++r) { | 
 |     for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { | 
 |       fprintf(file, "% 10d % 10d %17f\n", r, cols_[idx], values_[idx]); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void CompressedRowSparseMatrix::ToCRSMatrix(CRSMatrix* matrix) const { | 
 |   matrix->num_rows = num_rows_; | 
 |   matrix->num_cols = num_cols_; | 
 |   matrix->rows = rows_; | 
 |   matrix->cols = cols_; | 
 |   matrix->values = values_; | 
 |  | 
 |   // Trim. | 
 |   matrix->rows.resize(matrix->num_rows + 1); | 
 |   matrix->cols.resize(matrix->rows[matrix->num_rows]); | 
 |   matrix->values.resize(matrix->rows[matrix->num_rows]); | 
 | } | 
 |  | 
 | void CompressedRowSparseMatrix::SetMaxNumNonZeros(int num_nonzeros) { | 
 |   CHECK_GE(num_nonzeros, 0); | 
 |  | 
 |   cols_.resize(num_nonzeros); | 
 |   values_.resize(num_nonzeros); | 
 | } | 
 |  | 
 | std::unique_ptr<CompressedRowSparseMatrix> | 
 | CompressedRowSparseMatrix::CreateBlockDiagonalMatrix( | 
 |     const double* diagonal, const std::vector<Block>& blocks) { | 
 |   const int num_rows = NumScalarEntries(blocks); | 
 |   int num_nonzeros = 0; | 
 |   for (auto& block : blocks) { | 
 |     num_nonzeros += block.size * block.size; | 
 |   } | 
 |  | 
 |   auto matrix = std::make_unique<CompressedRowSparseMatrix>( | 
 |       num_rows, num_rows, num_nonzeros); | 
 |  | 
 |   int* rows = matrix->mutable_rows(); | 
 |   int* cols = matrix->mutable_cols(); | 
 |   double* values = matrix->mutable_values(); | 
 |   std::fill(values, values + num_nonzeros, 0.0); | 
 |  | 
 |   int idx_cursor = 0; | 
 |   int col_cursor = 0; | 
 |   for (auto& block : blocks) { | 
 |     for (int r = 0; r < block.size; ++r) { | 
 |       *(rows++) = idx_cursor; | 
 |       if (diagonal != nullptr) { | 
 |         values[idx_cursor + r] = diagonal[col_cursor + r]; | 
 |       } | 
 |       for (int c = 0; c < block.size; ++c, ++idx_cursor) { | 
 |         *(cols++) = col_cursor + c; | 
 |       } | 
 |     } | 
 |     col_cursor += block.size; | 
 |   } | 
 |   *rows = idx_cursor; | 
 |  | 
 |   *matrix->mutable_row_blocks() = blocks; | 
 |   *matrix->mutable_col_blocks() = blocks; | 
 |  | 
 |   CHECK_EQ(idx_cursor, num_nonzeros); | 
 |   CHECK_EQ(col_cursor, num_rows); | 
 |   return matrix; | 
 | } | 
 |  | 
 | std::unique_ptr<CompressedRowSparseMatrix> | 
 | CompressedRowSparseMatrix::Transpose() const { | 
 |   auto transpose = std::make_unique<CompressedRowSparseMatrix>( | 
 |       num_cols_, num_rows_, num_nonzeros()); | 
 |  | 
 |   switch (storage_type_) { | 
 |     case StorageType::UNSYMMETRIC: | 
 |       transpose->set_storage_type(StorageType::UNSYMMETRIC); | 
 |       break; | 
 |     case StorageType::LOWER_TRIANGULAR: | 
 |       transpose->set_storage_type(StorageType::UPPER_TRIANGULAR); | 
 |       break; | 
 |     case StorageType::UPPER_TRIANGULAR: | 
 |       transpose->set_storage_type(StorageType::LOWER_TRIANGULAR); | 
 |       break; | 
 |     default: | 
 |       LOG(FATAL) << "Unknown storage type: " << storage_type_; | 
 |   }; | 
 |  | 
 |   TransposeForCompressedRowSparseStructure(num_rows(), | 
 |                                            num_cols(), | 
 |                                            num_nonzeros(), | 
 |                                            rows(), | 
 |                                            cols(), | 
 |                                            values(), | 
 |                                            transpose->mutable_rows(), | 
 |                                            transpose->mutable_cols(), | 
 |                                            transpose->mutable_values()); | 
 |  | 
 |   // The rest of the code updates the block information. Immediately | 
 |   // return in case of no block information. | 
 |   if (row_blocks_.empty()) { | 
 |     return transpose; | 
 |   } | 
 |  | 
 |   *(transpose->mutable_row_blocks()) = col_blocks_; | 
 |   *(transpose->mutable_col_blocks()) = row_blocks_; | 
 |   return transpose; | 
 | } | 
 |  | 
 | std::unique_ptr<CompressedRowSparseMatrix> | 
 | CompressedRowSparseMatrix::CreateRandomMatrix( | 
 |     CompressedRowSparseMatrix::RandomMatrixOptions options, | 
 |     std::mt19937& prng) { | 
 |   CHECK_GT(options.num_row_blocks, 0); | 
 |   CHECK_GT(options.min_row_block_size, 0); | 
 |   CHECK_GT(options.max_row_block_size, 0); | 
 |   CHECK_LE(options.min_row_block_size, options.max_row_block_size); | 
 |  | 
 |   if (options.storage_type == StorageType::UNSYMMETRIC) { | 
 |     CHECK_GT(options.num_col_blocks, 0); | 
 |     CHECK_GT(options.min_col_block_size, 0); | 
 |     CHECK_GT(options.max_col_block_size, 0); | 
 |     CHECK_LE(options.min_col_block_size, options.max_col_block_size); | 
 |   } else { | 
 |     // Symmetric matrices (LOWER_TRIANGULAR or UPPER_TRIANGULAR); | 
 |     options.num_col_blocks = options.num_row_blocks; | 
 |     options.min_col_block_size = options.min_row_block_size; | 
 |     options.max_col_block_size = options.max_row_block_size; | 
 |   } | 
 |  | 
 |   CHECK_GT(options.block_density, 0.0); | 
 |   CHECK_LE(options.block_density, 1.0); | 
 |  | 
 |   std::vector<Block> row_blocks; | 
 |   row_blocks.reserve(options.num_row_blocks); | 
 |   std::vector<Block> col_blocks; | 
 |   col_blocks.reserve(options.num_col_blocks); | 
 |  | 
 |   std::uniform_int_distribution<int> col_distribution( | 
 |       options.min_col_block_size, options.max_col_block_size); | 
 |   std::uniform_int_distribution<int> row_distribution( | 
 |       options.min_row_block_size, options.max_row_block_size); | 
 |   std::uniform_real_distribution<double> uniform01(0.0, 1.0); | 
 |   std::normal_distribution<double> standard_normal_distribution; | 
 |  | 
 |   // Generate the row block structure. | 
 |   int row_pos = 0; | 
 |   for (int i = 0; i < options.num_row_blocks; ++i) { | 
 |     // Generate a random integer in [min_row_block_size, max_row_block_size] | 
 |     row_blocks.emplace_back(row_distribution(prng), row_pos); | 
 |     row_pos += row_blocks.back().size; | 
 |   } | 
 |  | 
 |   if (options.storage_type == StorageType::UNSYMMETRIC) { | 
 |     // Generate the col block structure. | 
 |     int col_pos = 0; | 
 |     for (int i = 0; i < options.num_col_blocks; ++i) { | 
 |       // Generate a random integer in [min_col_block_size, max_col_block_size] | 
 |       col_blocks.emplace_back(col_distribution(prng), col_pos); | 
 |       col_pos += col_blocks.back().size; | 
 |     } | 
 |   } else { | 
 |     // Symmetric matrices (LOWER_TRIANGULAR or UPPER_TRIANGULAR); | 
 |     col_blocks = row_blocks; | 
 |   } | 
 |  | 
 |   std::vector<int> tsm_rows; | 
 |   std::vector<int> tsm_cols; | 
 |   std::vector<double> tsm_values; | 
 |  | 
 |   // For ease of construction, we are going to generate the | 
 |   // CompressedRowSparseMatrix by generating it as a | 
 |   // TripletSparseMatrix and then converting it to a | 
 |   // CompressedRowSparseMatrix. | 
 |  | 
 |   // It is possible that the random matrix is empty which is likely | 
 |   // not what the user wants, so do the matrix generation till we have | 
 |   // at least one non-zero entry. | 
 |   while (tsm_values.empty()) { | 
 |     tsm_rows.clear(); | 
 |     tsm_cols.clear(); | 
 |     tsm_values.clear(); | 
 |  | 
 |     int row_block_begin = 0; | 
 |     for (int r = 0; r < options.num_row_blocks; ++r) { | 
 |       int col_block_begin = 0; | 
 |       for (int c = 0; c < options.num_col_blocks; ++c) { | 
 |         if (((options.storage_type == StorageType::UPPER_TRIANGULAR) && | 
 |              (r > c)) || | 
 |             ((options.storage_type == StorageType::LOWER_TRIANGULAR) && | 
 |              (r < c))) { | 
 |           col_block_begin += col_blocks[c].size; | 
 |           continue; | 
 |         } | 
 |  | 
 |         // Randomly determine if this block is present or not. | 
 |         if (uniform01(prng) <= options.block_density) { | 
 |           auto randn = [&standard_normal_distribution, &prng] { | 
 |             return standard_normal_distribution(prng); | 
 |           }; | 
 |           // If the matrix is symmetric, then we take care to generate | 
 |           // symmetric diagonal blocks. | 
 |           if (options.storage_type == StorageType::UNSYMMETRIC || r != c) { | 
 |             AddRandomBlock(row_blocks[r].size, | 
 |                            col_blocks[c].size, | 
 |                            row_block_begin, | 
 |                            col_block_begin, | 
 |                            randn, | 
 |                            &tsm_rows, | 
 |                            &tsm_cols, | 
 |                            &tsm_values); | 
 |           } else { | 
 |             AddSymmetricRandomBlock(row_blocks[r].size, | 
 |                                     row_block_begin, | 
 |                                     randn, | 
 |                                     &tsm_rows, | 
 |                                     &tsm_cols, | 
 |                                     &tsm_values); | 
 |           } | 
 |         } | 
 |         col_block_begin += col_blocks[c].size; | 
 |       } | 
 |       row_block_begin += row_blocks[r].size; | 
 |     } | 
 |   } | 
 |  | 
 |   const int num_rows = NumScalarEntries(row_blocks); | 
 |   const int num_cols = NumScalarEntries(col_blocks); | 
 |   const bool kDoNotTranspose = false; | 
 |   auto matrix = CompressedRowSparseMatrix::FromTripletSparseMatrix( | 
 |       TripletSparseMatrix(num_rows, num_cols, tsm_rows, tsm_cols, tsm_values), | 
 |       kDoNotTranspose); | 
 |   (*matrix->mutable_row_blocks()) = row_blocks; | 
 |   (*matrix->mutable_col_blocks()) = col_blocks; | 
 |   matrix->set_storage_type(options.storage_type); | 
 |   return matrix; | 
 | } | 
 |  | 
 | }  // namespace ceres::internal |