| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2023 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: vitus@google.com (Michael Vitus) | 
 |  | 
 | #include "ceres/context_impl.h" | 
 |  | 
 | #include <string> | 
 |  | 
 | #include "ceres/internal/config.h" | 
 | #include "ceres/stringprintf.h" | 
 | #include "ceres/wall_time.h" | 
 |  | 
 | #ifndef CERES_NO_CUDA | 
 | #include "cublas_v2.h" | 
 | #include "cuda_runtime.h" | 
 | #include "cusolverDn.h" | 
 | #endif  // CERES_NO_CUDA | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | ContextImpl::ContextImpl() = default; | 
 |  | 
 | #ifndef CERES_NO_CUDA | 
 | void ContextImpl::TearDown() { | 
 |   if (cusolver_handle_ != nullptr) { | 
 |     cusolverDnDestroy(cusolver_handle_); | 
 |     cusolver_handle_ = nullptr; | 
 |   } | 
 |   if (cublas_handle_ != nullptr) { | 
 |     cublasDestroy(cublas_handle_); | 
 |     cublas_handle_ = nullptr; | 
 |   } | 
 |   if (cusparse_handle_ != nullptr) { | 
 |     cusparseDestroy(cusparse_handle_); | 
 |     cusparse_handle_ = nullptr; | 
 |   } | 
 |   for (auto& s : streams_) { | 
 |     if (s != nullptr) { | 
 |       cudaStreamDestroy(s); | 
 |       s = nullptr; | 
 |     } | 
 |   } | 
 |   is_cuda_initialized_ = false; | 
 | } | 
 |  | 
 | std::string ContextImpl::CudaConfigAsString() const { | 
 |   return ceres::internal::StringPrintf( | 
 |       "======================= CUDA Device Properties ======================\n" | 
 |       "Cuda version              : %d.%d\n" | 
 |       "Device ID                 : %d\n" | 
 |       "Device name               : %s\n" | 
 |       "Total GPU memory          : %6.f MiB\n" | 
 |       "GPU memory available      : %6.f MiB\n" | 
 |       "Compute capability        : %d.%d\n" | 
 |       "Warp size                 : %d\n" | 
 |       "Max threads per block     : %d\n" | 
 |       "Max threads per dim       : %d %d %d\n" | 
 |       "Max grid size             : %d %d %d\n" | 
 |       "Multiprocessor count      : %d\n" | 
 |       "cudaMallocAsync supported : %s\n" | 
 |       "====================================================================", | 
 |       cuda_version_major_, | 
 |       cuda_version_minor_, | 
 |       gpu_device_id_in_use_, | 
 |       gpu_device_properties_.name, | 
 |       gpu_device_properties_.totalGlobalMem / 1024.0 / 1024.0, | 
 |       GpuMemoryAvailable() / 1024.0 / 1024.0, | 
 |       gpu_device_properties_.major, | 
 |       gpu_device_properties_.minor, | 
 |       gpu_device_properties_.warpSize, | 
 |       gpu_device_properties_.maxThreadsPerBlock, | 
 |       gpu_device_properties_.maxThreadsDim[0], | 
 |       gpu_device_properties_.maxThreadsDim[1], | 
 |       gpu_device_properties_.maxThreadsDim[2], | 
 |       gpu_device_properties_.maxGridSize[0], | 
 |       gpu_device_properties_.maxGridSize[1], | 
 |       gpu_device_properties_.maxGridSize[2], | 
 |       gpu_device_properties_.multiProcessorCount, | 
 |       // In CUDA 12.0.0+ cudaDeviceProp has field memoryPoolsSupported, but it | 
 |       // is not available in older versions | 
 |       is_cuda_memory_pools_supported_ ? "Yes" : "No"); | 
 | } | 
 |  | 
 | size_t ContextImpl::GpuMemoryAvailable() const { | 
 |   size_t free, total; | 
 |   cudaMemGetInfo(&free, &total); | 
 |   return free; | 
 | } | 
 |  | 
 | bool ContextImpl::InitCuda(std::string* message) { | 
 |   if (is_cuda_initialized_) { | 
 |     return true; | 
 |   } | 
 |   CHECK_EQ(cudaGetDevice(&gpu_device_id_in_use_), cudaSuccess); | 
 |   int cuda_version; | 
 |   CHECK_EQ(cudaRuntimeGetVersion(&cuda_version), cudaSuccess); | 
 |   cuda_version_major_ = cuda_version / 1000; | 
 |   cuda_version_minor_ = (cuda_version % 1000) / 10; | 
 |   CHECK_EQ( | 
 |       cudaGetDeviceProperties(&gpu_device_properties_, gpu_device_id_in_use_), | 
 |       cudaSuccess); | 
 | #if CUDART_VERSION >= 11020 | 
 |   int is_cuda_memory_pools_supported; | 
 |   CHECK_EQ(cudaDeviceGetAttribute(&is_cuda_memory_pools_supported, | 
 |                                   cudaDevAttrMemoryPoolsSupported, | 
 |                                   gpu_device_id_in_use_), | 
 |            cudaSuccess); | 
 |   is_cuda_memory_pools_supported_ = is_cuda_memory_pools_supported == 1; | 
 | #endif | 
 |   VLOG(3) << "\n" << CudaConfigAsString(); | 
 |   EventLogger event_logger("InitCuda"); | 
 |   if (cublasCreate(&cublas_handle_) != CUBLAS_STATUS_SUCCESS) { | 
 |     *message = | 
 |         "CUDA initialization failed because cuBLAS::cublasCreate failed."; | 
 |     cublas_handle_ = nullptr; | 
 |     return false; | 
 |   } | 
 |   event_logger.AddEvent("cublasCreate"); | 
 |   if (cusolverDnCreate(&cusolver_handle_) != CUSOLVER_STATUS_SUCCESS) { | 
 |     *message = | 
 |         "CUDA initialization failed because cuSolverDN::cusolverDnCreate " | 
 |         "failed."; | 
 |     TearDown(); | 
 |     return false; | 
 |   } | 
 |   event_logger.AddEvent("cusolverDnCreate"); | 
 |   if (cusparseCreate(&cusparse_handle_) != CUSPARSE_STATUS_SUCCESS) { | 
 |     *message = | 
 |         "CUDA initialization failed because cuSPARSE::cusparseCreate failed."; | 
 |     TearDown(); | 
 |     return false; | 
 |   } | 
 |   event_logger.AddEvent("cusparseCreate"); | 
 |   for (auto& s : streams_) { | 
 |     if (cudaStreamCreateWithFlags(&s, cudaStreamNonBlocking) != cudaSuccess) { | 
 |       *message = | 
 |           "CUDA initialization failed because CUDA::cudaStreamCreateWithFlags " | 
 |           "failed."; | 
 |       TearDown(); | 
 |       return false; | 
 |     } | 
 |   } | 
 |   event_logger.AddEvent("cudaStreamCreateWithFlags"); | 
 |   if (cusolverDnSetStream(cusolver_handle_, DefaultStream()) != | 
 |           CUSOLVER_STATUS_SUCCESS || | 
 |       cublasSetStream(cublas_handle_, DefaultStream()) != | 
 |           CUBLAS_STATUS_SUCCESS || | 
 |       cusparseSetStream(cusparse_handle_, DefaultStream()) != | 
 |           CUSPARSE_STATUS_SUCCESS) { | 
 |     *message = "CUDA initialization failed because SetStream failed."; | 
 |     TearDown(); | 
 |     return false; | 
 |   } | 
 |   event_logger.AddEvent("SetStream"); | 
 |   is_cuda_initialized_ = true; | 
 |   return true; | 
 | } | 
 | #endif  // CERES_NO_CUDA | 
 |  | 
 | ContextImpl::~ContextImpl() { | 
 | #ifndef CERES_NO_CUDA | 
 |   TearDown(); | 
 | #endif  // CERES_NO_CUDA | 
 | } | 
 |  | 
 | void ContextImpl::EnsureMinimumThreads(int num_threads) { | 
 |   thread_pool.Resize(num_threads); | 
 | } | 
 |  | 
 | }  // namespace ceres::internal |