| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/block_sparse_matrix.h" |
| |
| #include <algorithm> |
| #include <limits> |
| #include <memory> |
| #include <random> |
| #include <vector> |
| |
| #include "ceres/block_structure.h" |
| #include "ceres/casts.h" |
| #include "ceres/internal/eigen.h" |
| #include "ceres/linear_least_squares_problems.h" |
| #include "ceres/triplet_sparse_matrix.h" |
| #include "gtest/gtest.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| namespace { |
| |
| std::unique_ptr<BlockSparseMatrix> CreateTestMatrixFromId(int id) { |
| if (id == 0) { |
| // Create the following block sparse matrix: |
| // [ 1 2 0 0 0 0 ] |
| // [ 3 4 0 0 0 0 ] |
| // [ 0 0 5 6 7 0 ] |
| // [ 0 0 8 9 10 0 ] |
| CompressedRowBlockStructure* bs = new CompressedRowBlockStructure; |
| bs->cols = { |
| // Block size 2, position 0. |
| Block(2, 0), |
| // Block size 3, position 2. |
| Block(3, 2), |
| // Block size 1, position 5. |
| Block(1, 5), |
| }; |
| bs->rows = {CompressedRow(1), CompressedRow(1)}; |
| bs->rows[0].block = Block(2, 0); |
| bs->rows[0].cells = {Cell(0, 0)}; |
| |
| bs->rows[1].block = Block(2, 2); |
| bs->rows[1].cells = {Cell(1, 4)}; |
| auto m = std::make_unique<BlockSparseMatrix>(bs); |
| EXPECT_NE(m, nullptr); |
| EXPECT_EQ(m->num_rows(), 4); |
| EXPECT_EQ(m->num_cols(), 6); |
| EXPECT_EQ(m->num_nonzeros(), 10); |
| double* values = m->mutable_values(); |
| for (int i = 0; i < 10; ++i) { |
| values[i] = i + 1; |
| } |
| return m; |
| } else if (id == 1) { |
| // Create the following block sparse matrix: |
| // [ 1 2 0 5 6 0 ] |
| // [ 3 4 0 7 8 0 ] |
| // [ 0 0 9 0 0 0 ] |
| CompressedRowBlockStructure* bs = new CompressedRowBlockStructure; |
| bs->cols = { |
| // Block size 2, position 0. |
| Block(2, 0), |
| // Block size 1, position 2. |
| Block(1, 2), |
| // Block size 2, position 3. |
| Block(2, 3), |
| // Block size 1, position 5. |
| Block(1, 5), |
| }; |
| bs->rows = {CompressedRow(2), CompressedRow(1)}; |
| bs->rows[0].block = Block(2, 0); |
| bs->rows[0].cells = {Cell(0, 0), Cell(2, 4)}; |
| |
| bs->rows[1].block = Block(1, 2); |
| bs->rows[1].cells = {Cell(1, 8)}; |
| auto m = std::make_unique<BlockSparseMatrix>(bs); |
| EXPECT_NE(m, nullptr); |
| EXPECT_EQ(m->num_rows(), 3); |
| EXPECT_EQ(m->num_cols(), 6); |
| EXPECT_EQ(m->num_nonzeros(), 9); |
| double* values = m->mutable_values(); |
| for (int i = 0; i < 9; ++i) { |
| values[i] = i + 1; |
| } |
| return m; |
| } else if (id == 2) { |
| // Create the following block sparse matrix: |
| // [ 1 2 0 | 6 7 0 ] |
| // [ 3 4 0 | 8 9 0 ] |
| // [ 0 0 5 | 0 0 10] |
| // With cells of the left submatrix preceding cells of the right submatrix |
| CompressedRowBlockStructure* bs = new CompressedRowBlockStructure; |
| bs->cols = { |
| // Block size 2, position 0. |
| Block(2, 0), |
| // Block size 1, position 2. |
| Block(1, 2), |
| // Block size 2, position 3. |
| Block(2, 3), |
| // Block size 1, position 5. |
| Block(1, 5), |
| }; |
| bs->rows = {CompressedRow(2), CompressedRow(1)}; |
| bs->rows[0].block = Block(2, 0); |
| bs->rows[0].cells = {Cell(0, 0), Cell(2, 5)}; |
| |
| bs->rows[1].block = Block(1, 2); |
| bs->rows[1].cells = {Cell(1, 4), Cell(3, 9)}; |
| auto m = std::make_unique<BlockSparseMatrix>(bs); |
| EXPECT_NE(m, nullptr); |
| EXPECT_EQ(m->num_rows(), 3); |
| EXPECT_EQ(m->num_cols(), 6); |
| EXPECT_EQ(m->num_nonzeros(), 10); |
| double* values = m->mutable_values(); |
| for (int i = 0; i < 10; ++i) { |
| values[i] = i + 1; |
| } |
| return m; |
| } |
| return nullptr; |
| } |
| } // namespace |
| |
| const int kNumThreads = 4; |
| |
| class BlockSparseMatrixTest : public ::testing::Test { |
| protected: |
| void SetUp() final { |
| std::unique_ptr<LinearLeastSquaresProblem> problem = |
| CreateLinearLeastSquaresProblemFromId(2); |
| ASSERT_TRUE(problem != nullptr); |
| a_.reset(down_cast<BlockSparseMatrix*>(problem->A.release())); |
| |
| problem = CreateLinearLeastSquaresProblemFromId(1); |
| ASSERT_TRUE(problem != nullptr); |
| b_.reset(down_cast<TripletSparseMatrix*>(problem->A.release())); |
| |
| ASSERT_EQ(a_->num_rows(), b_->num_rows()); |
| ASSERT_EQ(a_->num_cols(), b_->num_cols()); |
| ASSERT_EQ(a_->num_nonzeros(), b_->num_nonzeros()); |
| context_.EnsureMinimumThreads(kNumThreads); |
| |
| BlockSparseMatrix::RandomMatrixOptions options; |
| options.num_row_blocks = 1000; |
| options.min_row_block_size = 1; |
| options.max_row_block_size = 8; |
| options.num_col_blocks = 100; |
| options.min_col_block_size = 1; |
| options.max_col_block_size = 8; |
| options.block_density = 0.05; |
| |
| std::mt19937 rng; |
| c_ = BlockSparseMatrix::CreateRandomMatrix(options, rng); |
| } |
| |
| std::unique_ptr<BlockSparseMatrix> a_; |
| std::unique_ptr<TripletSparseMatrix> b_; |
| std::unique_ptr<BlockSparseMatrix> c_; |
| ContextImpl context_; |
| }; |
| |
| TEST_F(BlockSparseMatrixTest, SetZeroTest) { |
| a_->SetZero(); |
| EXPECT_EQ(13, a_->num_nonzeros()); |
| } |
| |
| TEST_F(BlockSparseMatrixTest, RightMultiplyAndAccumulateTest) { |
| Vector y_a = Vector::Zero(a_->num_rows()); |
| Vector y_b = Vector::Zero(a_->num_rows()); |
| for (int i = 0; i < a_->num_cols(); ++i) { |
| Vector x = Vector::Zero(a_->num_cols()); |
| x[i] = 1.0; |
| a_->RightMultiplyAndAccumulate(x.data(), y_a.data()); |
| b_->RightMultiplyAndAccumulate(x.data(), y_b.data()); |
| EXPECT_LT((y_a - y_b).norm(), 1e-12); |
| } |
| } |
| |
| TEST_F(BlockSparseMatrixTest, RightMultiplyAndAccumulateParallelTest) { |
| Vector y_0 = Vector::Random(a_->num_rows()); |
| Vector y_s = y_0; |
| Vector y_p = y_0; |
| |
| Vector x = Vector::Random(a_->num_cols()); |
| a_->RightMultiplyAndAccumulate(x.data(), y_s.data()); |
| |
| a_->RightMultiplyAndAccumulate(x.data(), y_p.data(), &context_, kNumThreads); |
| |
| // Current parallel implementation is expected to be bit-exact |
| EXPECT_EQ((y_s - y_p).norm(), 0.); |
| } |
| |
| TEST_F(BlockSparseMatrixTest, LeftMultiplyAndAccumulateTest) { |
| Vector y_a = Vector::Zero(a_->num_cols()); |
| Vector y_b = Vector::Zero(a_->num_cols()); |
| for (int i = 0; i < a_->num_rows(); ++i) { |
| Vector x = Vector::Zero(a_->num_rows()); |
| x[i] = 1.0; |
| a_->LeftMultiplyAndAccumulate(x.data(), y_a.data()); |
| b_->LeftMultiplyAndAccumulate(x.data(), y_b.data()); |
| EXPECT_LT((y_a - y_b).norm(), 1e-12); |
| } |
| } |
| |
| TEST_F(BlockSparseMatrixTest, LeftMultiplyAndAccumulateParallelTest) { |
| Vector y_0 = Vector::Random(a_->num_cols()); |
| Vector y_s = y_0; |
| Vector y_p = y_0; |
| |
| Vector x = Vector::Random(a_->num_rows()); |
| a_->LeftMultiplyAndAccumulate(x.data(), y_s.data()); |
| |
| a_->LeftMultiplyAndAccumulate(x.data(), y_p.data(), &context_, kNumThreads); |
| |
| // Parallel implementation for left products uses a different order of |
| // traversal, thus results might be different |
| EXPECT_LT((y_s - y_p).norm(), 1e-12); |
| } |
| |
| TEST_F(BlockSparseMatrixTest, SquaredColumnNormTest) { |
| Vector y_a = Vector::Zero(a_->num_cols()); |
| Vector y_b = Vector::Zero(a_->num_cols()); |
| a_->SquaredColumnNorm(y_a.data()); |
| b_->SquaredColumnNorm(y_b.data()); |
| EXPECT_LT((y_a - y_b).norm(), 1e-12); |
| } |
| |
| TEST_F(BlockSparseMatrixTest, SquaredColumnNormParallelTest) { |
| Vector y_a = Vector::Zero(c_->num_cols()); |
| Vector y_b = Vector::Zero(c_->num_cols()); |
| c_->SquaredColumnNorm(y_a.data()); |
| |
| c_->SquaredColumnNorm(y_b.data(), &context_, kNumThreads); |
| EXPECT_LT((y_a - y_b).norm(), 1e-12); |
| } |
| |
| TEST_F(BlockSparseMatrixTest, ScaleColumnsTest) { |
| const Vector scale = Vector::Random(c_->num_cols()).cwiseAbs(); |
| |
| const Vector x = Vector::Random(c_->num_rows()); |
| Vector y_expected = Vector::Zero(c_->num_cols()); |
| c_->LeftMultiplyAndAccumulate(x.data(), y_expected.data()); |
| y_expected.array() *= scale.array(); |
| |
| c_->ScaleColumns(scale.data()); |
| Vector y_observed = Vector::Zero(c_->num_cols()); |
| c_->LeftMultiplyAndAccumulate(x.data(), y_observed.data()); |
| |
| EXPECT_GT(y_expected.norm(), 1.); |
| EXPECT_LT((y_observed - y_expected).norm(), 1e-12 * y_expected.norm()); |
| } |
| |
| TEST_F(BlockSparseMatrixTest, ScaleColumnsParallelTest) { |
| const Vector scale = Vector::Random(c_->num_cols()).cwiseAbs(); |
| |
| const Vector x = Vector::Random(c_->num_rows()); |
| Vector y_expected = Vector::Zero(c_->num_cols()); |
| c_->LeftMultiplyAndAccumulate(x.data(), y_expected.data()); |
| y_expected.array() *= scale.array(); |
| |
| c_->ScaleColumns(scale.data(), &context_, kNumThreads); |
| Vector y_observed = Vector::Zero(c_->num_cols()); |
| c_->LeftMultiplyAndAccumulate(x.data(), y_observed.data()); |
| |
| EXPECT_GT(y_expected.norm(), 1.); |
| EXPECT_LT((y_observed - y_expected).norm(), 1e-12 * y_expected.norm()); |
| } |
| |
| TEST_F(BlockSparseMatrixTest, ToDenseMatrixTest) { |
| Matrix m_a; |
| Matrix m_b; |
| a_->ToDenseMatrix(&m_a); |
| b_->ToDenseMatrix(&m_b); |
| EXPECT_LT((m_a - m_b).norm(), 1e-12); |
| } |
| |
| TEST_F(BlockSparseMatrixTest, AppendRows) { |
| std::unique_ptr<LinearLeastSquaresProblem> problem = |
| CreateLinearLeastSquaresProblemFromId(2); |
| std::unique_ptr<BlockSparseMatrix> m( |
| down_cast<BlockSparseMatrix*>(problem->A.release())); |
| a_->AppendRows(*m); |
| EXPECT_EQ(a_->num_rows(), 2 * m->num_rows()); |
| EXPECT_EQ(a_->num_cols(), m->num_cols()); |
| |
| problem = CreateLinearLeastSquaresProblemFromId(1); |
| std::unique_ptr<TripletSparseMatrix> m2( |
| down_cast<TripletSparseMatrix*>(problem->A.release())); |
| b_->AppendRows(*m2); |
| |
| Vector y_a = Vector::Zero(a_->num_rows()); |
| Vector y_b = Vector::Zero(a_->num_rows()); |
| for (int i = 0; i < a_->num_cols(); ++i) { |
| Vector x = Vector::Zero(a_->num_cols()); |
| x[i] = 1.0; |
| y_a.setZero(); |
| y_b.setZero(); |
| |
| a_->RightMultiplyAndAccumulate(x.data(), y_a.data()); |
| b_->RightMultiplyAndAccumulate(x.data(), y_b.data()); |
| EXPECT_LT((y_a - y_b).norm(), 1e-12); |
| } |
| } |
| |
| TEST_F(BlockSparseMatrixTest, AppendDeleteRowsTransposedStructure) { |
| auto problem = CreateLinearLeastSquaresProblemFromId(2); |
| std::unique_ptr<BlockSparseMatrix> m( |
| down_cast<BlockSparseMatrix*>(problem->A.release())); |
| |
| auto block_structure = a_->block_structure(); |
| |
| // Several AppendRows and DeleteRowBlocks operations are applied to matrix, |
| // with regular and transpose block structures being compared after each |
| // operation. |
| // |
| // Non-negative values encode number of row blocks to remove |
| // -1 encodes appending matrix m |
| const int num_row_blocks_to_delete[] = {0, -1, 1, -1, 8, -1, 10}; |
| for (auto& t : num_row_blocks_to_delete) { |
| if (t == -1) { |
| a_->AppendRows(*m); |
| } else if (t > 0) { |
| ASSERT_GE(block_structure->rows.size(), t); |
| a_->DeleteRowBlocks(t); |
| } |
| |
| auto block_structure = a_->block_structure(); |
| auto transpose_block_structure = a_->transpose_block_structure(); |
| ASSERT_NE(block_structure, nullptr); |
| ASSERT_NE(transpose_block_structure, nullptr); |
| |
| EXPECT_EQ(block_structure->rows.size(), |
| transpose_block_structure->cols.size()); |
| EXPECT_EQ(block_structure->cols.size(), |
| transpose_block_structure->rows.size()); |
| |
| std::vector<int> nnz_col(transpose_block_structure->rows.size()); |
| for (int i = 0; i < block_structure->cols.size(); ++i) { |
| EXPECT_EQ(block_structure->cols[i].position, |
| transpose_block_structure->rows[i].block.position); |
| const int col_size = transpose_block_structure->rows[i].block.size; |
| EXPECT_EQ(block_structure->cols[i].size, col_size); |
| |
| for (auto& col_cell : transpose_block_structure->rows[i].cells) { |
| int matches = 0; |
| const int row_block_id = col_cell.block_id; |
| nnz_col[i] += |
| col_size * transpose_block_structure->cols[row_block_id].size; |
| for (auto& row_cell : block_structure->rows[row_block_id].cells) { |
| if (row_cell.block_id != i) continue; |
| EXPECT_EQ(row_cell.position, col_cell.position); |
| ++matches; |
| } |
| EXPECT_EQ(matches, 1); |
| } |
| EXPECT_EQ(nnz_col[i], transpose_block_structure->rows[i].nnz); |
| if (i > 0) { |
| nnz_col[i] += nnz_col[i - 1]; |
| } |
| EXPECT_EQ(nnz_col[i], transpose_block_structure->rows[i].cumulative_nnz); |
| } |
| for (int i = 0; i < block_structure->rows.size(); ++i) { |
| EXPECT_EQ(block_structure->rows[i].block.position, |
| transpose_block_structure->cols[i].position); |
| EXPECT_EQ(block_structure->rows[i].block.size, |
| transpose_block_structure->cols[i].size); |
| |
| for (auto& row_cell : block_structure->rows[i].cells) { |
| int matches = 0; |
| const int col_block_id = row_cell.block_id; |
| for (auto& col_cell : |
| transpose_block_structure->rows[col_block_id].cells) { |
| if (col_cell.block_id != i) continue; |
| EXPECT_EQ(col_cell.position, row_cell.position); |
| ++matches; |
| } |
| EXPECT_EQ(matches, 1); |
| } |
| } |
| } |
| } |
| |
| TEST_F(BlockSparseMatrixTest, AppendAndDeleteBlockDiagonalMatrix) { |
| const std::vector<Block>& column_blocks = a_->block_structure()->cols; |
| const int num_cols = |
| column_blocks.back().size + column_blocks.back().position; |
| Vector diagonal(num_cols); |
| for (int i = 0; i < num_cols; ++i) { |
| diagonal(i) = 2 * i * i + 1; |
| } |
| std::unique_ptr<BlockSparseMatrix> appendage( |
| BlockSparseMatrix::CreateDiagonalMatrix(diagonal.data(), column_blocks)); |
| |
| a_->AppendRows(*appendage); |
| Vector y_a, y_b; |
| y_a.resize(a_->num_rows()); |
| y_b.resize(a_->num_rows()); |
| for (int i = 0; i < a_->num_cols(); ++i) { |
| Vector x = Vector::Zero(a_->num_cols()); |
| x[i] = 1.0; |
| y_a.setZero(); |
| y_b.setZero(); |
| |
| a_->RightMultiplyAndAccumulate(x.data(), y_a.data()); |
| b_->RightMultiplyAndAccumulate(x.data(), y_b.data()); |
| EXPECT_LT((y_a.head(b_->num_rows()) - y_b.head(b_->num_rows())).norm(), |
| 1e-12); |
| Vector expected_tail = Vector::Zero(a_->num_cols()); |
| expected_tail(i) = diagonal(i); |
| EXPECT_LT((y_a.tail(a_->num_cols()) - expected_tail).norm(), 1e-12); |
| } |
| |
| a_->DeleteRowBlocks(column_blocks.size()); |
| EXPECT_EQ(a_->num_rows(), b_->num_rows()); |
| EXPECT_EQ(a_->num_cols(), b_->num_cols()); |
| |
| y_a.resize(a_->num_rows()); |
| y_b.resize(a_->num_rows()); |
| for (int i = 0; i < a_->num_cols(); ++i) { |
| Vector x = Vector::Zero(a_->num_cols()); |
| x[i] = 1.0; |
| y_a.setZero(); |
| y_b.setZero(); |
| |
| a_->RightMultiplyAndAccumulate(x.data(), y_a.data()); |
| b_->RightMultiplyAndAccumulate(x.data(), y_b.data()); |
| EXPECT_LT((y_a - y_b).norm(), 1e-12); |
| } |
| } |
| |
| TEST(BlockSparseMatrix, CreateDiagonalMatrix) { |
| std::vector<Block> column_blocks; |
| column_blocks.emplace_back(2, 0); |
| column_blocks.emplace_back(1, 2); |
| column_blocks.emplace_back(3, 3); |
| const int num_cols = |
| column_blocks.back().size + column_blocks.back().position; |
| Vector diagonal(num_cols); |
| for (int i = 0; i < num_cols; ++i) { |
| diagonal(i) = 2 * i * i + 1; |
| } |
| |
| std::unique_ptr<BlockSparseMatrix> m( |
| BlockSparseMatrix::CreateDiagonalMatrix(diagonal.data(), column_blocks)); |
| const CompressedRowBlockStructure* bs = m->block_structure(); |
| EXPECT_EQ(bs->cols.size(), column_blocks.size()); |
| for (int i = 0; i < column_blocks.size(); ++i) { |
| EXPECT_EQ(bs->cols[i].size, column_blocks[i].size); |
| EXPECT_EQ(bs->cols[i].position, column_blocks[i].position); |
| } |
| EXPECT_EQ(m->num_rows(), m->num_cols()); |
| Vector x = Vector::Ones(num_cols); |
| Vector y = Vector::Zero(num_cols); |
| m->RightMultiplyAndAccumulate(x.data(), y.data()); |
| for (int i = 0; i < num_cols; ++i) { |
| EXPECT_NEAR(y[i], diagonal[i], std::numeric_limits<double>::epsilon()); |
| } |
| } |
| |
| TEST(BlockSparseMatrix, ToDenseMatrix) { |
| { |
| std::unique_ptr<BlockSparseMatrix> m = CreateTestMatrixFromId(0); |
| Matrix m_dense; |
| m->ToDenseMatrix(&m_dense); |
| EXPECT_EQ(m_dense.rows(), 4); |
| EXPECT_EQ(m_dense.cols(), 6); |
| Matrix m_expected(4, 6); |
| m_expected << 1, 2, 0, 0, 0, 0, 3, 4, 0, 0, 0, 0, 0, 0, 5, 6, 7, 0, 0, 0, 8, |
| 9, 10, 0; |
| EXPECT_EQ(m_dense, m_expected); |
| } |
| |
| { |
| std::unique_ptr<BlockSparseMatrix> m = CreateTestMatrixFromId(1); |
| Matrix m_dense; |
| m->ToDenseMatrix(&m_dense); |
| EXPECT_EQ(m_dense.rows(), 3); |
| EXPECT_EQ(m_dense.cols(), 6); |
| Matrix m_expected(3, 6); |
| m_expected << 1, 2, 0, 5, 6, 0, 3, 4, 0, 7, 8, 0, 0, 0, 9, 0, 0, 0; |
| EXPECT_EQ(m_dense, m_expected); |
| } |
| |
| { |
| std::unique_ptr<BlockSparseMatrix> m = CreateTestMatrixFromId(2); |
| Matrix m_dense; |
| m->ToDenseMatrix(&m_dense); |
| EXPECT_EQ(m_dense.rows(), 3); |
| EXPECT_EQ(m_dense.cols(), 6); |
| Matrix m_expected(3, 6); |
| m_expected << 1, 2, 0, 6, 7, 0, 3, 4, 0, 8, 9, 0, 0, 0, 5, 0, 0, 10; |
| EXPECT_EQ(m_dense, m_expected); |
| } |
| } |
| |
| TEST(BlockSparseMatrix, ToCRSMatrix) { |
| { |
| std::unique_ptr<BlockSparseMatrix> m = CreateTestMatrixFromId(0); |
| auto m_crs = m->ToCompressedRowSparseMatrix(); |
| std::vector<int> rows_expected = {0, 2, 4, 7, 10}; |
| std::vector<int> cols_expected = {0, 1, 0, 1, 2, 3, 4, 2, 3, 4}; |
| std::vector<double> values_expected = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; |
| for (int i = 0; i < rows_expected.size(); ++i) { |
| EXPECT_EQ(m_crs->rows()[i], rows_expected[i]); |
| } |
| for (int i = 0; i < cols_expected.size(); ++i) { |
| EXPECT_EQ(m_crs->cols()[i], cols_expected[i]); |
| } |
| for (int i = 0; i < values_expected.size(); ++i) { |
| EXPECT_EQ(m_crs->values()[i], values_expected[i]); |
| } |
| } |
| { |
| std::unique_ptr<BlockSparseMatrix> m = CreateTestMatrixFromId(1); |
| auto m_crs = m->ToCompressedRowSparseMatrix(); |
| std::vector<int> rows_expected = {0, 4, 8, 9}; |
| std::vector<int> cols_expected = {0, 1, 3, 4, 0, 1, 3, 4, 2}; |
| std::vector<double> values_expected = {1, 2, 5, 6, 3, 4, 7, 8, 9}; |
| for (int i = 0; i < rows_expected.size(); ++i) { |
| EXPECT_EQ(m_crs->rows()[i], rows_expected[i]); |
| } |
| for (int i = 0; i < cols_expected.size(); ++i) { |
| EXPECT_EQ(m_crs->cols()[i], cols_expected[i]); |
| } |
| for (int i = 0; i < values_expected.size(); ++i) { |
| EXPECT_EQ(m_crs->values()[i], values_expected[i]); |
| } |
| } |
| { |
| std::unique_ptr<BlockSparseMatrix> m = CreateTestMatrixFromId(2); |
| auto m_crs = m->ToCompressedRowSparseMatrix(); |
| std::vector<int> rows_expected = {0, 4, 8, 10}; |
| std::vector<int> cols_expected = {0, 1, 3, 4, 0, 1, 3, 4, 2, 5}; |
| std::vector<double> values_expected = {1, 2, 6, 7, 3, 4, 8, 9, 5, 10}; |
| for (int i = 0; i < rows_expected.size(); ++i) { |
| EXPECT_EQ(m_crs->rows()[i], rows_expected[i]); |
| } |
| for (int i = 0; i < cols_expected.size(); ++i) { |
| EXPECT_EQ(m_crs->cols()[i], cols_expected[i]); |
| } |
| for (int i = 0; i < values_expected.size(); ++i) { |
| EXPECT_EQ(m_crs->values()[i], values_expected[i]); |
| } |
| } |
| } |
| |
| TEST(BlockSparseMatrix, ToCRSMatrixTranspose) { |
| { |
| std::unique_ptr<BlockSparseMatrix> m = CreateTestMatrixFromId(0); |
| auto m_crs_transpose = m->ToCompressedRowSparseMatrixTranspose(); |
| std::vector<int> rows_expected = {0, 2, 4, 6, 8, 10, 10}; |
| std::vector<int> cols_expected = {0, 1, 0, 1, 2, 3, 2, 3, 2, 3}; |
| std::vector<double> values_expected = {1, 3, 2, 4, 5, 8, 6, 9, 7, 10}; |
| EXPECT_EQ(m_crs_transpose->num_nonzeros(), cols_expected.size()); |
| EXPECT_EQ(m_crs_transpose->num_rows(), rows_expected.size() - 1); |
| for (int i = 0; i < rows_expected.size(); ++i) { |
| EXPECT_EQ(m_crs_transpose->rows()[i], rows_expected[i]); |
| } |
| for (int i = 0; i < cols_expected.size(); ++i) { |
| EXPECT_EQ(m_crs_transpose->cols()[i], cols_expected[i]); |
| } |
| for (int i = 0; i < values_expected.size(); ++i) { |
| EXPECT_EQ(m_crs_transpose->values()[i], values_expected[i]); |
| } |
| } |
| { |
| std::unique_ptr<BlockSparseMatrix> m = CreateTestMatrixFromId(1); |
| auto m_crs_transpose = m->ToCompressedRowSparseMatrixTranspose(); |
| std::vector<int> rows_expected = {0, 2, 4, 5, 7, 9, 9}; |
| std::vector<int> cols_expected = {0, 1, 0, 1, 2, 0, 1, 0, 1}; |
| std::vector<double> values_expected = {1, 3, 2, 4, 9, 5, 7, 6, 8}; |
| EXPECT_EQ(m_crs_transpose->num_nonzeros(), cols_expected.size()); |
| EXPECT_EQ(m_crs_transpose->num_rows(), rows_expected.size() - 1); |
| for (int i = 0; i < rows_expected.size(); ++i) { |
| EXPECT_EQ(m_crs_transpose->rows()[i], rows_expected[i]); |
| } |
| for (int i = 0; i < cols_expected.size(); ++i) { |
| EXPECT_EQ(m_crs_transpose->cols()[i], cols_expected[i]); |
| } |
| for (int i = 0; i < values_expected.size(); ++i) { |
| EXPECT_EQ(m_crs_transpose->values()[i], values_expected[i]); |
| } |
| } |
| { |
| std::unique_ptr<BlockSparseMatrix> m = CreateTestMatrixFromId(2); |
| auto m_crs_transpose = m->ToCompressedRowSparseMatrixTranspose(); |
| std::vector<int> rows_expected = {0, 2, 4, 5, 7, 9, 10}; |
| std::vector<int> cols_expected = {0, 1, 0, 1, 2, 0, 1, 0, 1, 2}; |
| std::vector<double> values_expected = {1, 3, 2, 4, 5, 6, 8, 7, 9, 10}; |
| EXPECT_EQ(m_crs_transpose->num_nonzeros(), cols_expected.size()); |
| EXPECT_EQ(m_crs_transpose->num_rows(), rows_expected.size() - 1); |
| for (int i = 0; i < rows_expected.size(); ++i) { |
| EXPECT_EQ(m_crs_transpose->rows()[i], rows_expected[i]); |
| } |
| for (int i = 0; i < cols_expected.size(); ++i) { |
| EXPECT_EQ(m_crs_transpose->cols()[i], cols_expected[i]); |
| } |
| for (int i = 0; i < values_expected.size(); ++i) { |
| EXPECT_EQ(m_crs_transpose->values()[i], values_expected[i]); |
| } |
| } |
| } |
| |
| TEST(BlockSparseMatrix, CreateTranspose) { |
| constexpr int kNumtrials = 10; |
| BlockSparseMatrix::RandomMatrixOptions options; |
| options.num_col_blocks = 10; |
| options.min_col_block_size = 1; |
| options.max_col_block_size = 3; |
| |
| options.num_row_blocks = 20; |
| options.min_row_block_size = 1; |
| options.max_row_block_size = 4; |
| options.block_density = 0.25; |
| std::mt19937 prng; |
| |
| for (int trial = 0; trial < kNumtrials; ++trial) { |
| auto a = BlockSparseMatrix::CreateRandomMatrix(options, prng); |
| |
| auto ap_bs = std::make_unique<CompressedRowBlockStructure>(); |
| *ap_bs = *a->block_structure(); |
| BlockSparseMatrix ap(ap_bs.release()); |
| std::copy_n(a->values(), a->num_nonzeros(), ap.mutable_values()); |
| |
| Vector x = Vector::Random(a->num_cols()); |
| Vector y = Vector::Random(a->num_rows()); |
| Vector a_x = Vector::Zero(a->num_rows()); |
| Vector a_t_y = Vector::Zero(a->num_cols()); |
| Vector ap_x = Vector::Zero(a->num_rows()); |
| Vector ap_t_y = Vector::Zero(a->num_cols()); |
| a->RightMultiplyAndAccumulate(x.data(), a_x.data()); |
| ap.RightMultiplyAndAccumulate(x.data(), ap_x.data()); |
| EXPECT_NEAR((a_x - ap_x).norm() / a_x.norm(), |
| 0.0, |
| std::numeric_limits<double>::epsilon()); |
| a->LeftMultiplyAndAccumulate(y.data(), a_t_y.data()); |
| ap.LeftMultiplyAndAccumulate(y.data(), ap_t_y.data()); |
| EXPECT_NEAR((a_t_y - ap_t_y).norm() / a_t_y.norm(), |
| 0.0, |
| std::numeric_limits<double>::epsilon()); |
| } |
| } |
| |
| } // namespace internal |
| } // namespace ceres |