| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2024 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| // |
| // CostFunctionToFunctor is an adapter class that allows users to use |
| // SizedCostFunction objects in templated functors which are to be used for |
| // automatic differentiation. This allows the user to seamlessly mix |
| // analytic, numeric and automatic differentiation. |
| // |
| // For example, let us assume that |
| // |
| // class IntrinsicProjection : public SizedCostFunction<2, 5, 3> { |
| // public: |
| // IntrinsicProjection(const double* observation); |
| // bool Evaluate(double const* const* parameters, |
| // double* residuals, |
| // double** jacobians) const override; |
| // }; |
| // |
| // is a cost function that implements the projection of a point in its |
| // local coordinate system onto its image plane and subtracts it from |
| // the observed point projection. It can compute its residual and |
| // jacobians either via analytic or numerical differentiation. |
| // |
| // Now we would like to compose the action of this CostFunction with |
| // the action of camera extrinsics, i.e., rotation and |
| // translation. Say we have a templated function |
| // |
| // template<typename T> |
| // void RotateAndTranslatePoint(const T* rotation, |
| // const T* translation, |
| // const T* point, |
| // T* result); |
| // |
| // Then we can now do the following, |
| // |
| // struct CameraProjection { |
| // CameraProjection(const double* observation) |
| // : intrinsic_projection_(new IntrinsicProjection(observation)) { |
| // } |
| // template <typename T> |
| // bool operator()(const T* rotation, |
| // const T* translation, |
| // const T* intrinsics, |
| // const T* point, |
| // T* residual) const { |
| // T transformed_point[3]; |
| // RotateAndTranslatePoint(rotation, translation, point, transformed_point); |
| // |
| // // Note that we call intrinsic_projection_, just like it was |
| // // any other templated functor. |
| // |
| // return intrinsic_projection_(intrinsics, transformed_point, residual); |
| // } |
| // |
| // private: |
| // CostFunctionToFunctor<2,5,3> intrinsic_projection_; |
| // }; |
| |
| #ifndef CERES_PUBLIC_COST_FUNCTION_TO_FUNCTOR_H_ |
| #define CERES_PUBLIC_COST_FUNCTION_TO_FUNCTOR_H_ |
| |
| #include <cstdint> |
| #include <numeric> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| #include "absl/log/check.h" |
| #include "ceres/cost_function.h" |
| #include "ceres/dynamic_cost_function_to_functor.h" |
| #include "ceres/internal/parameter_dims.h" |
| #include "ceres/types.h" |
| |
| namespace ceres { |
| |
| template <int kNumResiduals, int... Ns> |
| class CostFunctionToFunctor { |
| public: |
| // Takes ownership of cost_function. |
| explicit CostFunctionToFunctor(CostFunction* cost_function) |
| : CostFunctionToFunctor{std::unique_ptr<CostFunction>{cost_function}} {} |
| |
| // Takes ownership of cost_function. |
| explicit CostFunctionToFunctor(std::unique_ptr<CostFunction> cost_function) |
| : cost_functor_(std::move(cost_function)) { |
| CHECK(cost_functor_.function() != nullptr); |
| CHECK(kNumResiduals > 0 || kNumResiduals == DYNAMIC); |
| |
| const std::vector<int32_t>& parameter_block_sizes = |
| cost_functor_.function()->parameter_block_sizes(); |
| const int num_parameter_blocks = ParameterDims::kNumParameterBlocks; |
| CHECK_EQ(static_cast<int>(parameter_block_sizes.size()), |
| num_parameter_blocks); |
| |
| if (parameter_block_sizes.size() == num_parameter_blocks) { |
| for (int block = 0; block < num_parameter_blocks; ++block) { |
| CHECK_EQ(ParameterDims::GetDim(block), parameter_block_sizes[block]) |
| << "Parameter block size mismatch. The specified static parameter " |
| "block dimension does not match the one from the cost function."; |
| } |
| } |
| |
| CHECK_EQ(accumulate( |
| parameter_block_sizes.begin(), parameter_block_sizes.end(), 0), |
| ParameterDims::kNumParameters); |
| } |
| |
| template <typename T, typename... Ts> |
| bool operator()(const T* p1, Ts*... ps) const { |
| // Add one because of residual block. |
| static_assert(sizeof...(Ts) + 1 == ParameterDims::kNumParameterBlocks + 1, |
| "Invalid number of parameter blocks specified."); |
| |
| auto params = std::make_tuple(p1, ps...); |
| |
| // Extract residual pointer from params. The residual pointer is the |
| // last pointer. |
| constexpr int kResidualIndex = ParameterDims::kNumParameterBlocks; |
| T* residuals = std::get<kResidualIndex>(params); |
| |
| // Extract parameter block pointers from params. |
| using Indices = |
| std::make_integer_sequence<int, ParameterDims::kNumParameterBlocks>; |
| std::array<const T*, ParameterDims::kNumParameterBlocks> parameter_blocks = |
| GetParameterPointers<T>(params, Indices()); |
| |
| return cost_functor_(parameter_blocks.data(), residuals); |
| } |
| |
| private: |
| using ParameterDims = internal::StaticParameterDims<Ns...>; |
| |
| template <typename T, typename Tuple, int... Indices> |
| static std::array<const T*, ParameterDims::kNumParameterBlocks> |
| GetParameterPointers(const Tuple& paramPointers, |
| std::integer_sequence<int, Indices...>) { |
| return std::array<const T*, ParameterDims::kNumParameterBlocks>{ |
| {std::get<Indices>(paramPointers)...}}; |
| } |
| |
| DynamicCostFunctionToFunctor cost_functor_; |
| }; |
| |
| } // namespace ceres |
| |
| #endif // CERES_PUBLIC_COST_FUNCTION_TO_FUNCTOR_H_ |