| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: mierle@gmail.com (Keir Mierle) |
| // |
| // WARNING WARNING WARNING |
| // WARNING WARNING WARNING Tiny solver is experimental and will change. |
| // WARNING WARNING WARNING |
| |
| #ifndef CERES_PUBLIC_TINY_SOLVER_AUTODIFF_FUNCTION_H_ |
| #define CERES_PUBLIC_TINY_SOLVER_AUTODIFF_FUNCTION_H_ |
| |
| #include <memory> |
| #include <type_traits> |
| |
| #include "Eigen/Core" |
| #include "ceres/jet.h" |
| #include "ceres/types.h" // For kImpossibleValue. |
| |
| namespace ceres { |
| |
| // An adapter around autodiff-style CostFunctors to enable easier use of |
| // TinySolver. See the example below showing how to use it: |
| // |
| // // Example for cost functor with static residual size. |
| // // Same as an autodiff cost functor, but taking only 1 parameter. |
| // struct MyFunctor { |
| // template<typename T> |
| // bool operator()(const T* const parameters, T* residuals) const { |
| // const T& x = parameters[0]; |
| // const T& y = parameters[1]; |
| // const T& z = parameters[2]; |
| // residuals[0] = x + 2.*y + 4.*z; |
| // residuals[1] = y * z; |
| // return true; |
| // } |
| // }; |
| // |
| // typedef TinySolverAutoDiffFunction<MyFunctor, 2, 3> |
| // AutoDiffFunction; |
| // |
| // MyFunctor my_functor; |
| // AutoDiffFunction f(my_functor); |
| // |
| // Vec3 x = ...; |
| // TinySolver<AutoDiffFunction> solver; |
| // solver.Solve(f, &x); |
| // |
| // // Example for cost functor with dynamic residual size. |
| // // NumResiduals() supplies dynamic size of residuals. |
| // // Same functionality as in tiny_solver.h but with autodiff. |
| // struct MyFunctorWithDynamicResiduals { |
| // int NumResiduals() const { |
| // return 2; |
| // } |
| // |
| // template<typename T> |
| // bool operator()(const T* const parameters, T* residuals) const { |
| // const T& x = parameters[0]; |
| // const T& y = parameters[1]; |
| // const T& z = parameters[2]; |
| // residuals[0] = x + static_cast<T>(2.)*y + static_cast<T>(4.)*z; |
| // residuals[1] = y * z; |
| // return true; |
| // } |
| // }; |
| // |
| // typedef TinySolverAutoDiffFunction<MyFunctorWithDynamicResiduals, |
| // Eigen::Dynamic, |
| // 3> |
| // AutoDiffFunctionWithDynamicResiduals; |
| // |
| // MyFunctorWithDynamicResiduals my_functor_dyn; |
| // AutoDiffFunctionWithDynamicResiduals f(my_functor_dyn); |
| // |
| // Vec3 x = ...; |
| // TinySolver<AutoDiffFunctionWithDynamicResiduals> solver; |
| // solver.Solve(f, &x); |
| // |
| // WARNING: The cost function adapter is not thread safe. |
| template <typename CostFunctor, |
| int kNumResiduals, |
| int kNumParameters, |
| typename T = double> |
| class TinySolverAutoDiffFunction { |
| public: |
| // This class needs to have an Eigen aligned operator new as it contains |
| // as a member a Jet type, which itself has a fixed-size Eigen type as member. |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW |
| |
| explicit TinySolverAutoDiffFunction(const CostFunctor& cost_functor) |
| : cost_functor_(cost_functor) { |
| Initialize<kNumResiduals>(cost_functor); |
| } |
| |
| using Scalar = T; |
| enum { |
| NUM_PARAMETERS = kNumParameters, |
| NUM_RESIDUALS = kNumResiduals, |
| }; |
| |
| // This is similar to AutoDifferentiate(), but since there is only one |
| // parameter block it is easier to inline to avoid overhead. |
| bool operator()(const T* parameters, T* residuals, T* jacobian) const { |
| if (jacobian == nullptr) { |
| // No jacobian requested, so just directly call the cost function with |
| // doubles, skipping jets and derivatives. |
| return cost_functor_(parameters, residuals); |
| } |
| // Initialize the input jets with passed parameters. |
| for (int i = 0; i < kNumParameters; ++i) { |
| jet_parameters_[i].a = parameters[i]; // Scalar part. |
| jet_parameters_[i].v.setZero(); // Derivative part. |
| jet_parameters_[i].v[i] = T(1.0); |
| } |
| |
| // Initialize the output jets such that we can detect user errors. |
| for (int i = 0; i < num_residuals_; ++i) { |
| jet_residuals_[i].a = kImpossibleValue; |
| jet_residuals_[i].v.setConstant(kImpossibleValue); |
| } |
| |
| // Execute the cost function, but with jets to find the derivative. |
| if (!cost_functor_(jet_parameters_, jet_residuals_.data())) { |
| return false; |
| } |
| |
| // Copy the jacobian out of the derivative part of the residual jets. |
| Eigen::Map<Eigen::Matrix<T, kNumResiduals, kNumParameters>> jacobian_matrix( |
| jacobian, num_residuals_, kNumParameters); |
| for (int r = 0; r < num_residuals_; ++r) { |
| residuals[r] = jet_residuals_[r].a; |
| // Note that while this looks like a fast vectorized write, in practice it |
| // unfortunately thrashes the cache since the writes to the column-major |
| // jacobian are strided (e.g. rows are non-contiguous). |
| jacobian_matrix.row(r) = jet_residuals_[r].v; |
| } |
| return true; |
| } |
| |
| int NumResiduals() const { |
| return num_residuals_; // Set by Initialize. |
| } |
| |
| private: |
| const CostFunctor& cost_functor_; |
| |
| // The number of residuals at runtime. |
| // This will be overridden if NUM_RESIDUALS == Eigen::Dynamic. |
| int num_residuals_ = kNumResiduals; |
| |
| // To evaluate the cost function with jets, temporary storage is needed. These |
| // are the buffers that are used during evaluation; parameters for the input, |
| // and jet_residuals_ are where the final cost and derivatives end up. |
| // |
| // Since this buffer is used for evaluation, the adapter is not thread safe. |
| using JetType = Jet<T, kNumParameters>; |
| mutable JetType jet_parameters_[kNumParameters]; |
| // Eigen::Matrix serves as static or dynamic container. |
| mutable Eigen::Matrix<JetType, kNumResiduals, 1> jet_residuals_; |
| |
| // The number of residuals is dynamically sized and the number of |
| // parameters is statically sized. |
| template <int R> |
| typename std::enable_if<(R == Eigen::Dynamic), void>::type Initialize( |
| const CostFunctor& function) { |
| jet_residuals_.resize(function.NumResiduals()); |
| num_residuals_ = function.NumResiduals(); |
| } |
| |
| // The number of parameters and residuals are statically sized. |
| template <int R> |
| typename std::enable_if<(R != Eigen::Dynamic), void>::type Initialize( |
| const CostFunctor& /* function */) { |
| num_residuals_ = kNumResiduals; |
| } |
| }; |
| |
| } // namespace ceres |
| |
| #endif // CERES_PUBLIC_TINY_SOLVER_AUTODIFF_FUNCTION_H_ |