|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2023 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Authors: dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin) | 
|  |  | 
|  | #include "ceres/cuda_block_structure.h" | 
|  |  | 
|  | #ifndef CERES_NO_CUDA | 
|  |  | 
|  | #include "absl/log/check.h" | 
|  | #include "absl/log/log.h" | 
|  | #include "absl/log/vlog_is_on.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  | namespace { | 
|  | // Dimension of a sorted array of blocks | 
|  | inline int Dimension(const std::vector<Block>& blocks) { | 
|  | if (blocks.empty()) { | 
|  | return 0; | 
|  | } | 
|  | const auto& last = blocks.back(); | 
|  | return last.size + last.position; | 
|  | } | 
|  | }  // namespace | 
|  | CudaBlockSparseStructure::CudaBlockSparseStructure( | 
|  | const CompressedRowBlockStructure& block_structure, ContextImpl* context) | 
|  | : CudaBlockSparseStructure(block_structure, 0, context) {} | 
|  |  | 
|  | CudaBlockSparseStructure::CudaBlockSparseStructure( | 
|  | const CompressedRowBlockStructure& block_structure, | 
|  | const int num_col_blocks_e, | 
|  | ContextImpl* context) | 
|  | : first_cell_in_row_block_(context), | 
|  | value_offset_row_block_f_(context), | 
|  | cells_(context), | 
|  | row_blocks_(context), | 
|  | col_blocks_(context) { | 
|  | // Row blocks extracted from CompressedRowBlockStructure::rows | 
|  | std::vector<Block> row_blocks; | 
|  | // Column blocks can be reused as-is | 
|  | const auto& col_blocks = block_structure.cols; | 
|  |  | 
|  | // Row block offset is an index of the first cell corresponding to row block | 
|  | std::vector<int> first_cell_in_row_block; | 
|  | // Offset of the first value in the first non-empty row-block of F sub-matrix | 
|  | std::vector<int> value_offset_row_block_f; | 
|  | // Flat array of all cells from all row-blocks | 
|  | std::vector<Cell> cells; | 
|  |  | 
|  | int f_values_offset = -1; | 
|  | num_nonzeros_e_ = 0; | 
|  | is_crs_compatible_ = true; | 
|  | num_row_blocks_ = block_structure.rows.size(); | 
|  | num_col_blocks_ = col_blocks.size(); | 
|  |  | 
|  | row_blocks.reserve(num_row_blocks_); | 
|  | first_cell_in_row_block.reserve(num_row_blocks_ + 1); | 
|  | value_offset_row_block_f.reserve(num_row_blocks_ + 1); | 
|  | num_nonzeros_ = 0; | 
|  | // Block-sparse matrices arising from block-jacobian writer are expected to | 
|  | // have sequential layout (for partitioned matrices - it is expected that both | 
|  | // E and F sub-matrices have sequential layout). | 
|  | bool sequential_layout = true; | 
|  | int row_block_id = 0; | 
|  | num_row_blocks_e_ = 0; | 
|  | for (; row_block_id < num_row_blocks_; ++row_block_id) { | 
|  | const auto& r = block_structure.rows[row_block_id]; | 
|  | const int row_block_size = r.block.size; | 
|  | const int num_cells = r.cells.size(); | 
|  |  | 
|  | if (num_col_blocks_e == 0 || r.cells.size() == 0 || | 
|  | r.cells[0].block_id >= num_col_blocks_e) { | 
|  | break; | 
|  | } | 
|  | num_row_blocks_e_ = row_block_id + 1; | 
|  | // In E sub-matrix there is exactly a single E cell in the row | 
|  | // since E cells are stored separately from F cells, crs-compatibility of | 
|  | // F sub-matrix only breaks if there are more than 2 cells in row (that | 
|  | // is, more than 1 cell in F sub-matrix) | 
|  | if (num_cells > 2 && row_block_size > 1) { | 
|  | is_crs_compatible_ = false; | 
|  | } | 
|  | row_blocks.emplace_back(r.block); | 
|  | first_cell_in_row_block.push_back(cells.size()); | 
|  |  | 
|  | for (int cell_id = 0; cell_id < num_cells; ++cell_id) { | 
|  | const auto& c = r.cells[cell_id]; | 
|  | const int col_block_size = col_blocks[c.block_id].size; | 
|  | const int cell_size = col_block_size * row_block_size; | 
|  | cells.push_back(c); | 
|  | if (cell_id == 0) { | 
|  | DCHECK(c.position == num_nonzeros_e_); | 
|  | num_nonzeros_e_ += cell_size; | 
|  | } else { | 
|  | if (f_values_offset == -1) { | 
|  | num_nonzeros_ = c.position; | 
|  | f_values_offset = c.position; | 
|  | } | 
|  | sequential_layout &= c.position == num_nonzeros_; | 
|  | num_nonzeros_ += cell_size; | 
|  | if (cell_id == 1) { | 
|  | // Correct value_offset_row_block_f for empty row-blocks of F | 
|  | // preceding this one | 
|  | for (auto it = value_offset_row_block_f.rbegin(); | 
|  | it != value_offset_row_block_f.rend(); | 
|  | ++it) { | 
|  | if (*it != -1) break; | 
|  | *it = c.position; | 
|  | } | 
|  | value_offset_row_block_f.push_back(c.position); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (num_cells == 1) { | 
|  | value_offset_row_block_f.push_back(-1); | 
|  | } | 
|  | } | 
|  | for (; row_block_id < num_row_blocks_; ++row_block_id) { | 
|  | const auto& r = block_structure.rows[row_block_id]; | 
|  | const int row_block_size = r.block.size; | 
|  | const int num_cells = r.cells.size(); | 
|  | // After num_row_blocks_e_ row-blocks, there should be no cells in E | 
|  | // sub-matrix. Thus crs-compatibility of F sub-matrix breaks if there are | 
|  | // more than one cells in the row-block | 
|  | if (num_cells > 1 && row_block_size > 1) { | 
|  | is_crs_compatible_ = false; | 
|  | } | 
|  | row_blocks.emplace_back(r.block); | 
|  | first_cell_in_row_block.push_back(cells.size()); | 
|  |  | 
|  | if (r.cells.empty()) { | 
|  | value_offset_row_block_f.push_back(-1); | 
|  | } else { | 
|  | for (auto it = value_offset_row_block_f.rbegin(); | 
|  | it != value_offset_row_block_f.rend(); | 
|  | --it) { | 
|  | if (*it != -1) break; | 
|  | *it = cells[0].position; | 
|  | } | 
|  | value_offset_row_block_f.push_back(r.cells[0].position); | 
|  | } | 
|  | for (const auto& c : r.cells) { | 
|  | const int col_block_size = col_blocks[c.block_id].size; | 
|  | const int cell_size = col_block_size * row_block_size; | 
|  | cells.push_back(c); | 
|  | DCHECK(c.block_id >= num_col_blocks_e); | 
|  | if (f_values_offset == -1) { | 
|  | num_nonzeros_ = c.position; | 
|  | f_values_offset = c.position; | 
|  | } | 
|  | sequential_layout &= c.position == num_nonzeros_; | 
|  | num_nonzeros_ += cell_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (f_values_offset == -1) { | 
|  | f_values_offset = num_nonzeros_e_; | 
|  | num_nonzeros_ = num_nonzeros_e_; | 
|  | } | 
|  | // Fill non-zero offsets for the last rows of F submatrix | 
|  | for (auto it = value_offset_row_block_f.rbegin(); | 
|  | it != value_offset_row_block_f.rend(); | 
|  | ++it) { | 
|  | if (*it != -1) break; | 
|  | *it = num_nonzeros_; | 
|  | } | 
|  | value_offset_row_block_f.push_back(num_nonzeros_); | 
|  | CHECK_EQ(num_nonzeros_e_, f_values_offset); | 
|  | first_cell_in_row_block.push_back(cells.size()); | 
|  | num_cells_ = cells.size(); | 
|  |  | 
|  | num_rows_ = Dimension(row_blocks); | 
|  | num_cols_ = Dimension(col_blocks); | 
|  |  | 
|  | CHECK(sequential_layout); | 
|  |  | 
|  | if (VLOG_IS_ON(3)) { | 
|  | const size_t first_cell_in_row_block_size = | 
|  | first_cell_in_row_block.size() * sizeof(int); | 
|  | const size_t cells_size = cells.size() * sizeof(Cell); | 
|  | const size_t row_blocks_size = row_blocks.size() * sizeof(Block); | 
|  | const size_t col_blocks_size = col_blocks.size() * sizeof(Block); | 
|  | const size_t total_size = first_cell_in_row_block_size + cells_size + | 
|  | col_blocks_size + row_blocks_size; | 
|  | const double ratio = | 
|  | (100. * total_size) / (num_nonzeros_ * (sizeof(int) + sizeof(double)) + | 
|  | num_rows_ * sizeof(int)); | 
|  | VLOG(3) << "\nCudaBlockSparseStructure:\n" | 
|  | "\tRow block offsets: " | 
|  | << first_cell_in_row_block_size | 
|  | << " bytes\n" | 
|  | "\tColumn blocks: " | 
|  | << col_blocks_size | 
|  | << " bytes\n" | 
|  | "\tRow blocks: " | 
|  | << row_blocks_size | 
|  | << " bytes\n" | 
|  | "\tCells: " | 
|  | << cells_size << " bytes\n\tTotal: " << total_size | 
|  | << " bytes of GPU memory (" << ratio << "% of CRS matrix size)"; | 
|  | } | 
|  |  | 
|  | first_cell_in_row_block_.CopyFromCpuVector(first_cell_in_row_block); | 
|  | cells_.CopyFromCpuVector(cells); | 
|  | row_blocks_.CopyFromCpuVector(row_blocks); | 
|  | col_blocks_.CopyFromCpuVector(col_blocks); | 
|  | if (num_col_blocks_e || num_row_blocks_e_) { | 
|  | value_offset_row_block_f_.CopyFromCpuVector(value_offset_row_block_f); | 
|  | } | 
|  | } | 
|  | }  // namespace ceres::internal | 
|  |  | 
|  | #endif  // CERES_NO_CUDA |