Simplify instantiation of cost functions and their functors
If arguments are passed to a cost function that can be used to construct
the functor, the latter will be instantiated by the cost function using
std::make_unique to ensure exception safety. This not only avoids static
analysis warnings caused by calling new but also spelling the cost
functor type name multiple times.
Also expand deduction guides for instantiating
Dynamic(Auto|Numeric)DiffCostFunction from std::unique_ptr enabled
constructor overloads.
Finally, make CostFunction default move constructible and assignable but
only through derived classes. This in turn allows derived classes to be
movable without relying on custom implementations of corresponding
operators.
Change-Id: Idee8b9871d862bc9f9f8b5a8d0bedc52863e93c0
diff --git a/docs/source/automatic_derivatives.rst b/docs/source/automatic_derivatives.rst
index 26fceb0..3fe0727 100644
--- a/docs/source/automatic_derivatives.rst
+++ b/docs/source/automatic_derivatives.rst
@@ -37,9 +37,7 @@
};
- CostFunction* cost_function =
- new AutoDiffCostFunction<Rat43CostFunctor, 1, 4>(
- new Rat43CostFunctor(x, y));
+ auto* cost_function = new AutoDiffCostFunction<Rat43CostFunctor, 1, 4>(x, y);
Notice that compared to numeric differentiation, the only difference
when defining the functor for use with automatic differentiation is
diff --git a/docs/source/gradient_tutorial.rst b/docs/source/gradient_tutorial.rst
index 03bd7f1..2af44e1 100644
--- a/docs/source/gradient_tutorial.rst
+++ b/docs/source/gradient_tutorial.rst
@@ -47,8 +47,7 @@
static ceres::FirstOrderFunction* Create() {
constexpr int kNumParameters = 2;
- return new ceres::AutoDiffFirstOrderFunction<Rosenbrock, kNumParameters>(
- new Rosenbrock);
+ return new ceres::AutoDiffFirstOrderFunction<Rosenbrock, kNumParameters>();
}
};
@@ -161,8 +160,7 @@
constexpr int kNumParameters = 2;
return new ceres::NumericDiffFirstOrderFunction<Rosenbrock,
ceres::CENTRAL,
- kNumParameters>(
- new Rosenbrock);
+ kNumParameters>();
}
};
@@ -177,8 +175,6 @@
// f(x,y) = (1-x)^2 + 100(y - x^2)^2;
class Rosenbrock final : public ceres::FirstOrderFunction {
public:
- ~Rosenbrock() override {}
-
bool Evaluate(const double* parameters,
double* cost,
double* gradient) const override {
diff --git a/docs/source/interfacing_with_autodiff.rst b/docs/source/interfacing_with_autodiff.rst
index 59bc798..fa05835 100644
--- a/docs/source/interfacing_with_autodiff.rst
+++ b/docs/source/interfacing_with_autodiff.rst
@@ -118,12 +118,13 @@
y[0] = y_in[0];
y[1] = y_in[1];
- compute_distortion.reset(new ceres::CostFunctionToFunctor<1, 1>(
- new ceres::NumericDiffCostFunction<ComputeDistortionValueFunctor,
- ceres::CENTRAL,
- 1,
- 1>(
- new ComputeDistortionValueFunctor)));
+ compute_distortion = std::make_unique<ceres::CostFunctionToFunctor<1, 1>>(
+ std::make_unique<ceres::NumericDiffCostFunction<
+ ComputeDistortionValueFunctor
+ , ceres::CENTRAL, 1, 1
+ >
+ >()
+ );
}
template <typename T>
@@ -140,7 +141,7 @@
double x[2];
double y[2];
- std::unique_ptr<ceres::CostFunctionToFunctor<1, 1> > compute_distortion;
+ std::unique_ptr<ceres::CostFunctionToFunctor<1, 1>> compute_distortion;
};
diff --git a/docs/source/nnls_modeling.rst b/docs/source/nnls_modeling.rst
index 512834c..71d31e0 100644
--- a/docs/source/nnls_modeling.rst
+++ b/docs/source/nnls_modeling.rst
@@ -181,12 +181,19 @@
class AutoDiffCostFunction : public
SizedCostFunction<kNumResiduals, Ns> {
public:
- AutoDiffCostFunction(CostFunctor* functor, ownership = TAKE_OWNERSHIP);
+ // Instantiate CostFunctor using the supplied arguments.
+ template<class ...Args>
+ explicit AutoDiffCostFunction(Args&& ...args);
+ explicit AutoDiffCostFunction(std::unique_ptr<CostFunctor> functor);
+ explicit AutoDiffCostFunction(CostFunctor* functor, ownership = TAKE_OWNERSHIP);
+
// Ignore the template parameter kNumResiduals and use
// num_residuals instead.
AutoDiffCostFunction(CostFunctor* functor,
int num_residuals,
ownership = TAKE_OWNERSHIP);
+ AutoDiffCostFunction(std::unique_ptr<CostFunctor> functor,
+ int num_residuals);
};
To get an auto differentiated cost function, you must define a
@@ -244,9 +251,9 @@
.. code-block:: c++
- CostFunction* cost_function
- = new AutoDiffCostFunction<MyScalarCostFunctor, 1, 2, 2>(
- new MyScalarCostFunctor(1.0)); ^ ^ ^
+ auto* cost_function
+ = new AutoDiffCostFunction<MyScalarCostFunctor, 1, 2, 2>(1.0);
+ ^ ^ ^
| | |
Dimension of residual ------+ | |
Dimension of x ----------------+ |
@@ -272,7 +279,7 @@
.. code-block:: c++
MyScalarCostFunctor functor(1.0)
- CostFunction* cost_function
+ auto* cost_function
= new AutoDiffCostFunction<MyScalarCostFunctor, 1, 2, 2>(
&functor, DO_NOT_TAKE_OWNERSHIP);
@@ -281,9 +288,11 @@
.. code-block:: c++
- CostFunction* cost_function
- = new AutoDiffCostFunction<MyScalarCostFunctor, DYNAMIC, 2, 2>(
- new CostFunctorWithDynamicNumResiduals(1.0), ^ ^ ^
+ auto functor = std::make_unique<CostFunctorWithDynamicNumResiduals>(1.0);
+ auto* cost_function
+ = new AutoDiffCostFunction<CostFunctorWithDynamicNumResiduals,
+ DYNAMIC, 2, 2>(
+ std::move(functor), ^ ^ ^
runtime_number_of_residuals); <----+ | | |
| | | |
| | | |
@@ -336,9 +345,7 @@
.. code-block:: c++
- DynamicAutoDiffCostFunction<MyCostFunctor, 4>* cost_function =
- new DynamicAutoDiffCostFunction<MyCostFunctor, 4>(
- new MyCostFunctor());
+ auto* cost_function = new DynamicAutoDiffCostFunction<MyCostFunctor, 4>();
cost_function->AddParameterBlock(5);
cost_function->AddParameterBlock(10);
cost_function->SetNumResiduals(21);
@@ -443,9 +450,9 @@
.. code-block:: c++
- CostFunction* cost_function
- = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, 1, 2, 2>(
- new MyScalarCostFunctor(1.0)); ^ ^ ^ ^
+ auto* cost_function
+ = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, 1, 2, 2>(1.0)
+ ^ ^ ^ ^
| | | |
Finite Differencing Scheme -+ | | |
Dimension of residual ------------+ | |
@@ -465,17 +472,18 @@
.. code-block:: c++
- CostFunction* cost_function
- = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, DYNAMIC, 2, 2>(
- new CostFunctorWithDynamicNumResiduals(1.0), ^ ^ ^
- TAKE_OWNERSHIP, | | |
- runtime_number_of_residuals); <----+ | | |
- | | | |
- | | | |
- Actual number of residuals ------+ | | |
- Indicate dynamic number of residuals --------------------+ | |
- Dimension of x ------------------------------------------------+ |
- Dimension of y ---------------------------------------------------+
+ auto functor = std::make_unique<CostFunctorWithDynamicNumResiduals>(1.0);
+ auto* cost_function
+ = new NumericDiffCostFunction<CostFunctorWithDynamicNumResiduals,
+ CENTRAL, DYNAMIC, 2, 2>(
+ std::move(functor), ^ ^ ^
+ runtime_number_of_residuals); <----+ | | |
+ | | | |
+ | | | |
+ Actual number of residuals ------+ | | |
+ Indicate dynamic number of residuals --------+ | |
+ Dimension of x ------------------------------------+ |
+ Dimension of y ---------------------------------------+
There are three available numeric differentiation schemes in ceres-solver:
@@ -569,9 +577,8 @@
.. code-block:: c++
- CostFunction* cost_function
- = new NumericDiffCostFunction<MyCostFunction, CENTRAL, 1, 4, 8>(
- new MyCostFunction(...), TAKE_OWNERSHIP);
+ auto* cost_function
+ = new NumericDiffCostFunction<MyCostFunction, CENTRAL, 1, 4, 8>(...);
where ``MyCostFunction`` has 1 residual and 2 parameter blocks with
sizes 4 and 8 respectively. Look at the tests for a more detailed
@@ -612,8 +619,7 @@
.. code-block:: c++
- DynamicNumericDiffCostFunction<MyCostFunctor>* cost_function =
- new DynamicNumericDiffCostFunction<MyCostFunctor>(new MyCostFunctor);
+ auto cost_function = std::make_unique<DynamicNumericDiffCostFunction<MyCostFunctor>>();
cost_function->AddParameterBlock(5);
cost_function->AddParameterBlock(10);
cost_function->SetNumResiduals(21);
@@ -672,8 +678,8 @@
.. code-block:: c++
struct CameraProjection {
- CameraProjection(double* observation)
- : intrinsic_projection_(new IntrinsicProjection(observation)) {
+ explicit CameraProjection(double* observation)
+ : intrinsic_projection_(std::make_unique<IntrinsicProjection>(observation)) {
}
template <typename T>
@@ -691,7 +697,7 @@
}
private:
- CostFunctionToFunctor<2,5,3> intrinsic_projection_;
+ CostFunctionToFunctor<2, 5, 3> intrinsic_projection_;
};
Note that :class:`CostFunctionToFunctor` takes ownership of the
@@ -733,10 +739,9 @@
.. code-block:: c++
struct CameraProjection {
- CameraProjection(double* observation)
+ explicit CameraProjection(double* observation)
: intrinsic_projection_(
- new NumericDiffCostFunction<IntrinsicProjection, CENTRAL, 2, 5, 3>(
- new IntrinsicProjection(observation))) {}
+ std::make_unique<NumericDiffCostFunction<IntrinsicProjection, CENTRAL, 2, 5, 3>>()) {}
template <typename T>
bool operator()(const T* rotation,
@@ -794,8 +799,8 @@
.. code-block:: c++
struct CameraProjection {
- CameraProjection(double* observation)
- : intrinsic_projection_(new IntrinsicProjection(observation)) {
+ explicit CameraProjection(double* observation)
+ : intrinsic_projection_(std::make_unique<IntrinsicProjection>(observation)) {
}
template <typename T>
@@ -1122,9 +1127,8 @@
// Add parameter blocks
- CostFunction* cost_function =
- new AutoDiffCostFunction < UW_Camera_Mapper, 2, 9, 3>(
- new UW_Camera_Mapper(feature_x, feature_y));
+ auto* cost_function =
+ new AutoDiffCostFunction<UW_Camera_Mapper, 2, 9, 3>(feature_x, feature_y);
LossFunctionWrapper* loss_function(new HuberLoss(1.0), TAKE_OWNERSHIP);
problem.AddResidualBlock(cost_function, loss_function, parameters);
@@ -1556,8 +1560,8 @@
ProductManifold<std::unique_ptr<QuaternionManifold>, EuclideanManifold<3>> se3
{std::make_unique<QuaternionManifold>(), EuclideanManifold<3>{}};
-In C++17, the template parameters can be left out as they are automatically
-deduced making the initialization much simpler:
+The template parameters can also be left out as they are deduced automatically
+making the initialization much simpler:
.. code-block:: c++
diff --git a/docs/source/nnls_tutorial.rst b/docs/source/nnls_tutorial.rst
index 66728e0..6de800e 100644
--- a/docs/source/nnls_tutorial.rst
+++ b/docs/source/nnls_tutorial.rst
@@ -112,7 +112,7 @@
// Set up the only cost function (also known as residual). This uses
// auto-differentiation to obtain the derivative (jacobian).
CostFunction* cost_function =
- new AutoDiffCostFunction<CostFunctor, 1, 1>(new CostFunctor);
+ new AutoDiffCostFunction<CostFunctor, 1, 1>();
problem.AddResidualBlock(cost_function, nullptr, &x);
// Run the solver!
@@ -212,8 +212,7 @@
.. code-block:: c++
CostFunction* cost_function =
- new NumericDiffCostFunction<NumericDiffCostFunctor, ceres::CENTRAL, 1, 1>(
- new NumericDiffCostFunctor);
+ new NumericDiffCostFunction<NumericDiffCostFunctor, ceres::CENTRAL, 1, 1>();
problem.AddResidualBlock(cost_function, nullptr, &x);
Notice the parallel from when we were using automatic differentiation
@@ -221,7 +220,7 @@
.. code-block:: c++
CostFunction* cost_function =
- new AutoDiffCostFunction<CostFunctor, 1, 1>(new CostFunctor);
+ new AutoDiffCostFunction<CostFunctor, 1, 1>();
problem.AddResidualBlock(cost_function, nullptr, &x);
The construction looks almost identical to the one used for automatic
@@ -360,13 +359,13 @@
// Add residual terms to the problem using the autodiff
// wrapper to get the derivatives automatically.
problem.AddResidualBlock(
- new AutoDiffCostFunction<F1, 1, 1, 1>(new F1), nullptr, &x1, &x2);
+ new AutoDiffCostFunction<F1, 1, 1, 1>(), nullptr, &x1, &x2);
problem.AddResidualBlock(
- new AutoDiffCostFunction<F2, 1, 1, 1>(new F2), nullptr, &x3, &x4);
+ new AutoDiffCostFunction<F2, 1, 1, 1>(), nullptr, &x3, &x4);
problem.AddResidualBlock(
- new AutoDiffCostFunction<F3, 1, 1, 1>(new F3), nullptr, &x2, &x3);
+ new AutoDiffCostFunction<F3, 1, 1, 1>(), nullptr, &x2, &x3);
problem.AddResidualBlock(
- new AutoDiffCostFunction<F4, 1, 1, 1>(new F4), nullptr, &x1, &x4);
+ new AutoDiffCostFunction<F4, 1, 1, 1>(), nullptr, &x1, &x4);
Note that each ``ResidualBlock`` only depends on the two parameters
@@ -499,8 +498,8 @@
Problem problem;
for (int i = 0; i < kNumObservations; ++i) {
CostFunction* cost_function =
- new AutoDiffCostFunction<ExponentialResidual, 1, 1, 1>(
- new ExponentialResidual(data[2 * i], data[2 * i + 1]));
+ new AutoDiffCostFunction<ExponentialResidual, 1, 1, 1>
+ (data[2 * i], data[2 * i + 1]);
problem.AddResidualBlock(cost_function, nullptr, &m, &c);
}
@@ -675,8 +674,8 @@
// the client code.
static ceres::CostFunction* Create(const double observed_x,
const double observed_y) {
- return (new ceres::AutoDiffCostFunction<SnavelyReprojectionError, 2, 9, 3>(
- new SnavelyReprojectionError(observed_x, observed_y)));
+ return new ceres::AutoDiffCostFunction<SnavelyReprojectionError, 2, 9, 3>
+ (observed_x, observed_y);
}
double observed_x;
diff --git a/docs/source/numerical_derivatives.rst b/docs/source/numerical_derivatives.rst
index 609c84b..8d7fb3a 100644
--- a/docs/source/numerical_derivatives.rst
+++ b/docs/source/numerical_derivatives.rst
@@ -61,8 +61,7 @@
}
CostFunction* cost_function =
- new NumericDiffCostFunction<Rat43CostFunctor, FORWARD, 1, 4>(
- new Rat43CostFunctor(x, y));
+ new NumericDiffCostFunction<Rat43CostFunctor, FORWARD, 1, 4>(x, y);
This is about the minimum amount of work one can expect to do to
define the cost function. The only thing that the user needs to do is
diff --git a/examples/bicubic_interpolation.cc b/examples/bicubic_interpolation.cc
index 97f5c3c..21b3c7e 100644
--- a/examples/bicubic_interpolation.cc
+++ b/examples/bicubic_interpolation.cc
@@ -73,7 +73,7 @@
const Eigen::Vector2d& point,
double value) {
return new ceres::AutoDiffCostFunction<AutoDiffBiCubicCost, 1, 2>(
- new AutoDiffBiCubicCost(interpolator, point, value));
+ interpolator, point, value);
}
const Eigen::Vector2d point_;
diff --git a/examples/circle_fit.cc b/examples/circle_fit.cc
index 2d398c4..fd848d9 100644
--- a/examples/circle_fit.cc
+++ b/examples/circle_fit.cc
@@ -133,8 +133,8 @@
int num_points = 0;
while (scanf("%lf %lf\n", &xx, &yy) == 2) {
ceres::CostFunction* cost =
- new ceres::AutoDiffCostFunction<DistanceFromCircleCost, 1, 1, 1, 1>(
- new DistanceFromCircleCost(xx, yy));
+ new ceres::AutoDiffCostFunction<DistanceFromCircleCost, 1, 1, 1, 1>(xx,
+ yy);
problem.AddResidualBlock(cost, loss, &x, &y, &m);
num_points++;
}
diff --git a/examples/curve_fitting.cc b/examples/curve_fitting.cc
index c6b3a6b..105402e 100644
--- a/examples/curve_fitting.cc
+++ b/examples/curve_fitting.cc
@@ -143,7 +143,7 @@
for (int i = 0; i < kNumObservations; ++i) {
problem.AddResidualBlock(
new ceres::AutoDiffCostFunction<ExponentialResidual, 1, 1, 1>(
- new ExponentialResidual(data[2 * i], data[2 * i + 1])),
+ data[2 * i], data[2 * i + 1]),
nullptr,
&m,
&c);
diff --git a/examples/ellipse_approximation.cc b/examples/ellipse_approximation.cc
index eefc72d..6fa8f1c 100644
--- a/examples/ellipse_approximation.cc
+++ b/examples/ellipse_approximation.cc
@@ -354,7 +354,7 @@
static ceres::CostFunction* Create(const double sqrt_weight) {
return new ceres::AutoDiffCostFunction<EuclideanDistanceFunctor, 2, 2, 2>(
- new EuclideanDistanceFunctor(sqrt_weight));
+ sqrt_weight);
}
private:
diff --git a/examples/helloworld.cc b/examples/helloworld.cc
index c9972fd..40c2f2c 100644
--- a/examples/helloworld.cc
+++ b/examples/helloworld.cc
@@ -62,7 +62,7 @@
// Set up the only cost function (also known as residual). This uses
// auto-differentiation to obtain the derivative (jacobian).
ceres::CostFunction* cost_function =
- new ceres::AutoDiffCostFunction<CostFunctor, 1, 1>(new CostFunctor);
+ new ceres::AutoDiffCostFunction<CostFunctor, 1, 1>();
problem.AddResidualBlock(cost_function, nullptr, &x);
// Run the solver!
diff --git a/examples/iteration_callback_example.cc b/examples/iteration_callback_example.cc
index 98e24f1..0be2f36 100644
--- a/examples/iteration_callback_example.cc
+++ b/examples/iteration_callback_example.cc
@@ -168,7 +168,7 @@
for (int i = 0; i < kNumObservations; ++i) {
problem.AddResidualBlock(
new ceres::AutoDiffCostFunction<ExponentialResidual, 1, 1, 1>(
- new ExponentialResidual(data[2 * i], data[2 * i + 1])),
+ data[2 * i], data[2 * i + 1]),
nullptr,
&m,
&c);
diff --git a/examples/libmv_homography.cc b/examples/libmv_homography.cc
index 1cadb46..b7c9eda 100644
--- a/examples/libmv_homography.cc
+++ b/examples/libmv_homography.cc
@@ -327,14 +327,10 @@
// Step 2: Refine matrix using Ceres minimizer.
ceres::Problem problem;
for (int i = 0; i < x1.cols(); i++) {
- auto* homography_symmetric_geometric_cost_function =
- new HomographySymmetricGeometricCostFunctor(x1.col(i), x2.col(i));
-
problem.AddResidualBlock(
new ceres::AutoDiffCostFunction<HomographySymmetricGeometricCostFunctor,
4, // num_residuals
- 9>(
- homography_symmetric_geometric_cost_function),
+ 9>(x1.col(i), x2.col(i)),
nullptr,
H->data());
}
diff --git a/examples/more_garbow_hillstrom.cc b/examples/more_garbow_hillstrom.cc
index b2fe61b..f15e576 100644
--- a/examples/more_garbow_hillstrom.cc
+++ b/examples/more_garbow_hillstrom.cc
@@ -81,46 +81,47 @@
CERES_GET_FLAG(FLAGS_ridders_extrapolations);
}
-#define BEGIN_MGH_PROBLEM(name, num_parameters, num_residuals) \
- struct name { \
- static constexpr int kNumParameters = num_parameters; \
- static const double initial_x[kNumParameters]; \
- static const double lower_bounds[kNumParameters]; \
- static const double upper_bounds[kNumParameters]; \
- static const double constrained_optimal_cost; \
- static const double unconstrained_optimal_cost; \
- static CostFunction* Create() { \
- if (CERES_GET_FLAG(FLAGS_use_numeric_diff)) { \
- ceres::NumericDiffOptions options; \
- SetNumericDiffOptions(&options); \
- if (CERES_GET_FLAG(FLAGS_numeric_diff_method) == "central") { \
- return new NumericDiffCostFunction<name, \
- ceres::CENTRAL, \
- num_residuals, \
- num_parameters>( \
- new name, ceres::TAKE_OWNERSHIP, num_residuals, options); \
- } else if (CERES_GET_FLAG(FLAGS_numeric_diff_method) == "forward") { \
- return new NumericDiffCostFunction<name, \
- ceres::FORWARD, \
- num_residuals, \
- num_parameters>( \
- new name, ceres::TAKE_OWNERSHIP, num_residuals, options); \
- } else if (CERES_GET_FLAG(FLAGS_numeric_diff_method) == "ridders") { \
- return new NumericDiffCostFunction<name, \
- ceres::RIDDERS, \
- num_residuals, \
- num_parameters>( \
- new name, ceres::TAKE_OWNERSHIP, num_residuals, options); \
- } else { \
- LOG(ERROR) << "Invalid numeric diff method specified"; \
- return nullptr; \
- } \
- } else { \
- return new AutoDiffCostFunction<name, num_residuals, num_parameters>( \
- new name); \
- } \
- } \
- template <typename T> \
+#define BEGIN_MGH_PROBLEM(name, num_parameters, num_residuals) \
+ struct name { \
+ static constexpr int kNumParameters = num_parameters; \
+ static const double initial_x[kNumParameters]; \
+ static const double lower_bounds[kNumParameters]; \
+ static const double upper_bounds[kNumParameters]; \
+ static const double constrained_optimal_cost; \
+ static const double unconstrained_optimal_cost; \
+ static CostFunction* Create() { \
+ if (CERES_GET_FLAG(FLAGS_use_numeric_diff)) { \
+ ceres::NumericDiffOptions options; \
+ SetNumericDiffOptions(&options); \
+ if (CERES_GET_FLAG(FLAGS_numeric_diff_method) == "central") { \
+ return new NumericDiffCostFunction<name, \
+ ceres::CENTRAL, \
+ num_residuals, \
+ num_parameters>( \
+ new name, ceres::TAKE_OWNERSHIP, num_residuals, options); \
+ } else if (CERES_GET_FLAG(FLAGS_numeric_diff_method) == "forward") { \
+ return new NumericDiffCostFunction<name, \
+ ceres::FORWARD, \
+ num_residuals, \
+ num_parameters>( \
+ new name, ceres::TAKE_OWNERSHIP, num_residuals, options); \
+ } else if (CERES_GET_FLAG(FLAGS_numeric_diff_method) == "ridders") { \
+ return new NumericDiffCostFunction<name, \
+ ceres::RIDDERS, \
+ num_residuals, \
+ num_parameters>( \
+ new name, ceres::TAKE_OWNERSHIP, num_residuals, options); \
+ } else { \
+ LOG(ERROR) << "Invalid numeric diff method specified"; \
+ return nullptr; \
+ } \
+ } else { \
+ return new AutoDiffCostFunction<name, \
+ num_residuals, \
+ num_parameters>(); \
+ } \
+ } \
+ template <typename T> \
bool operator()(const T* const x, T* residual) const {
// clang-format off
diff --git a/examples/powell.cc b/examples/powell.cc
index 80de423..a4ca1b7 100644
--- a/examples/powell.cc
+++ b/examples/powell.cc
@@ -104,13 +104,13 @@
// wrapper to get the derivatives automatically. The parameters, x1 through
// x4, are modified in place.
problem.AddResidualBlock(
- new ceres::AutoDiffCostFunction<F1, 1, 1, 1>(new F1), nullptr, &x1, &x2);
+ new ceres::AutoDiffCostFunction<F1, 1, 1, 1>(), nullptr, &x1, &x2);
problem.AddResidualBlock(
- new ceres::AutoDiffCostFunction<F2, 1, 1, 1>(new F2), nullptr, &x3, &x4);
+ new ceres::AutoDiffCostFunction<F2, 1, 1, 1>(), nullptr, &x3, &x4);
problem.AddResidualBlock(
- new ceres::AutoDiffCostFunction<F3, 1, 1, 1>(new F3), nullptr, &x2, &x3);
+ new ceres::AutoDiffCostFunction<F3, 1, 1, 1>(), nullptr, &x2, &x3);
problem.AddResidualBlock(
- new ceres::AutoDiffCostFunction<F4, 1, 1, 1>(new F4), nullptr, &x1, &x4);
+ new ceres::AutoDiffCostFunction<F4, 1, 1, 1>(), nullptr, &x1, &x4);
ceres::Solver::Options options;
LOG_IF(FATAL,
diff --git a/examples/robust_curve_fitting.cc b/examples/robust_curve_fitting.cc
index 8759a46..e08b0df 100644
--- a/examples/robust_curve_fitting.cc
+++ b/examples/robust_curve_fitting.cc
@@ -147,7 +147,7 @@
for (int i = 0; i < kNumObservations; ++i) {
ceres::CostFunction* cost_function =
new ceres::AutoDiffCostFunction<ExponentialResidual, 1, 1, 1>(
- new ExponentialResidual(data[2 * i], data[2 * i + 1]));
+ data[2 * i], data[2 * i + 1]);
problem.AddResidualBlock(cost_function, new ceres::CauchyLoss(0.5), &m, &c);
}
diff --git a/examples/sampled_function/sampled_function.cc b/examples/sampled_function/sampled_function.cc
index 4cc3f11..40e9c1f 100644
--- a/examples/sampled_function/sampled_function.cc
+++ b/examples/sampled_function/sampled_function.cc
@@ -51,7 +51,7 @@
static ceres::CostFunction* Create(const Interpolator& interpolator) {
return new ceres::AutoDiffCostFunction<InterpolatedCostFunctor, 1, 1>(
- new InterpolatedCostFunctor(interpolator));
+ interpolator);
}
private:
diff --git a/examples/simple_bundle_adjuster.cc b/examples/simple_bundle_adjuster.cc
index 5dbdd9d..bb0ba1c 100644
--- a/examples/simple_bundle_adjuster.cc
+++ b/examples/simple_bundle_adjuster.cc
@@ -164,8 +164,8 @@
// the client code.
static ceres::CostFunction* Create(const double observed_x,
const double observed_y) {
- return (new ceres::AutoDiffCostFunction<SnavelyReprojectionError, 2, 9, 3>(
- new SnavelyReprojectionError(observed_x, observed_y)));
+ return new ceres::AutoDiffCostFunction<SnavelyReprojectionError, 2, 9, 3>(
+ observed_x, observed_y);
}
double observed_x;
diff --git a/examples/slam/pose_graph_2d/pose_graph_2d_error_term.h b/examples/slam/pose_graph_2d/pose_graph_2d_error_term.h
index 6ca1e60..3d34f8d 100644
--- a/examples/slam/pose_graph_2d/pose_graph_2d_error_term.h
+++ b/examples/slam/pose_graph_2d/pose_graph_2d_error_term.h
@@ -1,5 +1,5 @@
// Ceres Solver - A fast non-linear least squares minimizer
-// Copyright 2023 Google Inc. All rights reserved.
+// Copyright 2024 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
@@ -34,9 +34,9 @@
#define CERES_EXAMPLES_POSE_GRAPH_2D_POSE_GRAPH_2D_ERROR_TERM_H_
#include "Eigen/Core"
+#include "ceres/autodiff_cost_function.h"
-namespace ceres {
-namespace examples {
+namespace ceres::examples {
template <typename T>
Eigen::Matrix<T, 2, 2> RotationMatrix2D(T yaw_radians) {
@@ -96,10 +96,9 @@
double y_ab,
double yaw_ab_radians,
const Eigen::Matrix3d& sqrt_information) {
- return (new ceres::
- AutoDiffCostFunction<PoseGraph2dErrorTerm, 3, 1, 1, 1, 1, 1, 1>(
- new PoseGraph2dErrorTerm(
- x_ab, y_ab, yaw_ab_radians, sqrt_information)));
+ return new ceres::
+ AutoDiffCostFunction<PoseGraph2dErrorTerm, 3, 1, 1, 1, 1, 1, 1>(
+ x_ab, y_ab, yaw_ab_radians, sqrt_information);
}
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
@@ -113,7 +112,6 @@
const Eigen::Matrix3d sqrt_information_;
};
-} // namespace examples
-} // namespace ceres
+} // namespace ceres::examples
#endif // CERES_EXAMPLES_POSE_GRAPH_2D_POSE_GRAPH_2D_ERROR_TERM_H_
diff --git a/examples/slam/pose_graph_3d/pose_graph_3d_error_term.h b/examples/slam/pose_graph_3d/pose_graph_3d_error_term.h
index e072678..b1c0138 100644
--- a/examples/slam/pose_graph_3d/pose_graph_3d_error_term.h
+++ b/examples/slam/pose_graph_3d/pose_graph_3d_error_term.h
@@ -116,7 +116,7 @@
const Pose3d& t_ab_measured,
const Eigen::Matrix<double, 6, 6>& sqrt_information) {
return new ceres::AutoDiffCostFunction<PoseGraph3dErrorTerm, 6, 3, 4, 3, 4>(
- new PoseGraph3dErrorTerm(t_ab_measured, sqrt_information));
+ t_ab_measured, sqrt_information);
}
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
diff --git a/examples/snavely_reprojection_error.h b/examples/snavely_reprojection_error.h
index ff3f25a..aaf0c6c 100644
--- a/examples/snavely_reprojection_error.h
+++ b/examples/snavely_reprojection_error.h
@@ -1,5 +1,5 @@
// Ceres Solver - A fast non-linear least squares minimizer
-// Copyright 2023 Google Inc. All rights reserved.
+// Copyright 2024 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
@@ -41,10 +41,10 @@
#ifndef CERES_EXAMPLES_SNAVELY_REPROJECTION_ERROR_H_
#define CERES_EXAMPLES_SNAVELY_REPROJECTION_ERROR_H_
+#include "ceres/autodiff_cost_function.h"
#include "ceres/rotation.h"
-namespace ceres {
-namespace examples {
+namespace ceres::examples {
// Templated pinhole camera model for used with Ceres. The camera is
// parameterized using 9 parameters: 3 for rotation, 3 for translation, 1 for
@@ -95,8 +95,8 @@
// the client code.
static ceres::CostFunction* Create(const double observed_x,
const double observed_y) {
- return (new ceres::AutoDiffCostFunction<SnavelyReprojectionError, 2, 9, 3>(
- new SnavelyReprojectionError(observed_x, observed_y)));
+ return new ceres::AutoDiffCostFunction<SnavelyReprojectionError, 2, 9, 3>(
+ observed_x, observed_y);
}
double observed_x;
@@ -160,20 +160,15 @@
// the client code.
static ceres::CostFunction* Create(const double observed_x,
const double observed_y) {
- return (
- new ceres::AutoDiffCostFunction<SnavelyReprojectionErrorWithQuaternions,
- 2,
- 10,
- 3>(
- new SnavelyReprojectionErrorWithQuaternions(observed_x,
- observed_y)));
+ return new ceres::
+ AutoDiffCostFunction<SnavelyReprojectionErrorWithQuaternions, 2, 10, 3>(
+ observed_x, observed_y);
}
double observed_x;
double observed_y;
};
-} // namespace examples
-} // namespace ceres
+} // namespace ceres::examples
#endif // CERES_EXAMPLES_SNAVELY_REPROJECTION_ERROR_H_
diff --git a/include/ceres/autodiff_cost_function.h b/include/ceres/autodiff_cost_function.h
index 7e2fa71..878b2ec 100644
--- a/include/ceres/autodiff_cost_function.h
+++ b/include/ceres/autodiff_cost_function.h
@@ -1,5 +1,5 @@
// Ceres Solver - A fast non-linear least squares minimizer
-// Copyright 2023 Google Inc. All rights reserved.
+// Copyright 2024 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
@@ -82,9 +82,9 @@
// Then given this class definition, the auto differentiated cost function for
// it can be constructed as follows.
//
-// CostFunction* cost_function
-// = new AutoDiffCostFunction<MyScalarCostFunctor, 1, 2, 2>(
-// new MyScalarCostFunctor(1.0)); ^ ^ ^
+// auto* cost_function
+// = new AutoDiffCostFunction<MyScalarCostFunctor, 1, 2, 2>(1.0);
+// ^ ^ ^
// | | |
// Dimension of residual -----+ | |
// Dimension of x ---------------+ |
@@ -99,9 +99,11 @@
// AutoDiffCostFunction also supports cost functions with a
// runtime-determined number of residuals. For example:
//
-// CostFunction* cost_function
-// = new AutoDiffCostFunction<MyScalarCostFunctor, DYNAMIC, 2, 2>(
-// new CostFunctorWithDynamicNumResiduals(1.0), ^ ^ ^
+// auto functor = std::make_unique<CostFunctorWithDynamicNumResiduals>(1.0);
+// auto* cost_function
+// = new AutoDiffCostFunction<CostFunctorWithDynamicNumResiduals,
+// DYNAMIC, 2, 2>(
+// std::move(functor), ^ ^ ^
// runtime_number_of_residuals); <----+ | | |
// | | | |
// | | | |
@@ -126,11 +128,11 @@
#define CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_
#include <memory>
+#include <type_traits>
#include "ceres/internal/autodiff.h"
#include "ceres/sized_cost_function.h"
#include "ceres/types.h"
-#include "glog/logging.h"
namespace ceres {
@@ -156,13 +158,31 @@
public:
// Takes ownership of functor by default. Uses the template-provided
// value for the number of residuals ("kNumResiduals").
+ explicit AutoDiffCostFunction(std::unique_ptr<CostFunctor> functor)
+ : AutoDiffCostFunction{std::move(functor), TAKE_OWNERSHIP, FIXED_INIT} {}
+
+ // Constructs the CostFunctor on the heap and takes the ownership.
+ // Invocable only if the number of residuals is known at compile-time.
+ template <class... Args,
+ bool kIsDynamic = kNumResiduals == DYNAMIC,
+ std::enable_if_t<!kIsDynamic &&
+ std::is_constructible_v<CostFunctor, Args&&...>>* =
+ nullptr>
+ explicit AutoDiffCostFunction(Args&&... args)
+ // NOTE We explicitly use direct initialization using parentheses instead
+ // of uniform initialization using braces to avoid narrowing conversion
+ // warnings.
+ : AutoDiffCostFunction{
+ std::make_unique<CostFunctor>(std::forward<Args>(args)...)} {}
+
+ AutoDiffCostFunction(std::unique_ptr<CostFunctor> functor, int num_residuals)
+ : AutoDiffCostFunction{
+ std::move(functor), num_residuals, TAKE_OWNERSHIP, DYNAMIC_INIT} {}
+
explicit AutoDiffCostFunction(CostFunctor* functor,
Ownership ownership = TAKE_OWNERSHIP)
- : functor_(functor), ownership_(ownership) {
- static_assert(kNumResiduals != DYNAMIC,
- "Can't run the fixed-size constructor if the number of "
- "residuals is set to ceres::DYNAMIC.");
- }
+ : AutoDiffCostFunction{
+ std::unique_ptr<CostFunctor>{functor}, ownership, FIXED_INIT} {}
// Takes ownership of functor by default. Ignores the template-provided
// kNumResiduals in favor of the "num_residuals" argument provided.
@@ -172,17 +192,18 @@
AutoDiffCostFunction(CostFunctor* functor,
int num_residuals,
Ownership ownership = TAKE_OWNERSHIP)
- : functor_(functor), ownership_(ownership) {
- static_assert(kNumResiduals == DYNAMIC,
- "Can't run the dynamic-size constructor if the number of "
- "residuals is not ceres::DYNAMIC.");
- SizedCostFunction<kNumResiduals, Ns...>::set_num_residuals(num_residuals);
- }
+ : AutoDiffCostFunction{std::unique_ptr<CostFunctor>{functor},
+ num_residuals,
+ ownership,
+ DYNAMIC_INIT} {}
- AutoDiffCostFunction(AutoDiffCostFunction&& other)
- : functor_(std::move(other.functor_)), ownership_(other.ownership_) {}
+ AutoDiffCostFunction(AutoDiffCostFunction&& other) noexcept = default;
+ AutoDiffCostFunction& operator=(AutoDiffCostFunction&& other) noexcept =
+ default;
+ AutoDiffCostFunction(const AutoDiffCostFunction& other) = delete;
+ AutoDiffCostFunction& operator=(const AutoDiffCostFunction& other) = delete;
- virtual ~AutoDiffCostFunction() {
+ ~AutoDiffCostFunction() override {
// Manually release pointer if configured to not take ownership rather than
// deleting only if ownership is taken.
// This is to stay maximally compatible to old user code which may have
@@ -204,7 +225,7 @@
using ParameterDims =
typename SizedCostFunction<kNumResiduals, Ns...>::ParameterDims;
- if (!jacobians) {
+ if (jacobians == nullptr) {
return internal::VariadicEvaluate<ParameterDims>(
*functor_, parameters, residuals);
}
@@ -219,6 +240,33 @@
const CostFunctor& functor() const { return *functor_; }
private:
+ // Tags used to differentiate between dynamic and fixed size constructor
+ // delegate invocations.
+ static constexpr std::integral_constant<int, DYNAMIC> DYNAMIC_INIT{};
+ static constexpr std::integral_constant<int, kNumResiduals> FIXED_INIT{};
+
+ template <class InitTag>
+ AutoDiffCostFunction(std::unique_ptr<CostFunctor> functor,
+ int num_residuals,
+ Ownership ownership,
+ InitTag /*unused*/)
+ : functor_{std::move(functor)}, ownership_{ownership} {
+ static_assert(kNumResiduals == FIXED_INIT,
+ "Can't run the fixed-size constructor if the number of "
+ "residuals is set to ceres::DYNAMIC.");
+
+ if constexpr (InitTag::value == DYNAMIC_INIT) {
+ SizedCostFunction<kNumResiduals, Ns...>::set_num_residuals(num_residuals);
+ }
+ }
+
+ template <class InitTag>
+ AutoDiffCostFunction(std::unique_ptr<CostFunctor> functor,
+ Ownership ownership,
+ InitTag tag)
+ : AutoDiffCostFunction{
+ std::move(functor), kNumResiduals, ownership, tag} {}
+
std::unique_ptr<CostFunctor> functor_;
Ownership ownership_;
};
diff --git a/include/ceres/autodiff_first_order_function.h b/include/ceres/autodiff_first_order_function.h
index de7e8f1..6cd1b13 100644
--- a/include/ceres/autodiff_first_order_function.h
+++ b/include/ceres/autodiff_first_order_function.h
@@ -1,5 +1,5 @@
// Ceres Solver - A fast non-linear least squares minimizer
-// Copyright 2023 Google Inc. All rights reserved.
+// Copyright 2024 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
@@ -32,6 +32,7 @@
#define CERES_PUBLIC_AUTODIFF_FIRST_ORDER_FUNCTION_H_
#include <memory>
+#include <type_traits>
#include "ceres/first_order_function.h"
#include "ceres/internal/eigen.h"
@@ -106,10 +107,22 @@
public:
// Takes ownership of functor.
explicit AutoDiffFirstOrderFunction(FirstOrderFunctor* functor)
- : functor_(functor) {
+ : AutoDiffFirstOrderFunction{
+ std::unique_ptr<FirstOrderFunctor>{functor}} {}
+
+ explicit AutoDiffFirstOrderFunction(
+ std::unique_ptr<FirstOrderFunctor> functor)
+ : functor_(std::move(functor)) {
static_assert(kNumParameters > 0, "kNumParameters must be positive");
}
+ template <class... Args,
+ std::enable_if_t<std::is_constructible_v<FirstOrderFunctor,
+ Args&&...>>* = nullptr>
+ explicit AutoDiffFirstOrderFunction(Args&&... args)
+ : AutoDiffFirstOrderFunction{
+ std::make_unique<FirstOrderFunctor>(std::forward<Args>(args)...)} {}
+
bool Evaluate(const double* const parameters,
double* cost,
double* gradient) const override {
diff --git a/include/ceres/cost_function.h b/include/ceres/cost_function.h
index 79d4912..2e5b1dd 100644
--- a/include/ceres/cost_function.h
+++ b/include/ceres/cost_function.h
@@ -1,5 +1,5 @@
// Ceres Solver - A fast non-linear least squares minimizer
-// Copyright 2023 Google Inc. All rights reserved.
+// Copyright 2024 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
@@ -65,7 +65,7 @@
public:
CostFunction();
CostFunction(const CostFunction&) = delete;
- void operator=(const CostFunction&) = delete;
+ CostFunction& operator=(const CostFunction&) = delete;
virtual ~CostFunction();
@@ -124,6 +124,10 @@
int num_residuals() const { return num_residuals_; }
protected:
+ // Prevent moving through the base class
+ CostFunction(CostFunction&& other) noexcept;
+ CostFunction& operator=(CostFunction&& other) noexcept;
+
std::vector<int32_t>* mutable_parameter_block_sizes() {
return ¶meter_block_sizes_;
}
diff --git a/include/ceres/cost_function_to_functor.h b/include/ceres/cost_function_to_functor.h
index e9592ed..573508e 100644
--- a/include/ceres/cost_function_to_functor.h
+++ b/include/ceres/cost_function_to_functor.h
@@ -1,5 +1,5 @@
// Ceres Solver - A fast non-linear least squares minimizer
-// Copyright 2023 Google Inc. All rights reserved.
+// Copyright 2024 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
@@ -94,8 +94,6 @@
#include "ceres/cost_function.h"
#include "ceres/dynamic_cost_function_to_functor.h"
-#include "ceres/internal/export.h"
-#include "ceres/internal/fixed_array.h"
#include "ceres/internal/parameter_dims.h"
#include "ceres/types.h"
#include "glog/logging.h"
@@ -107,12 +105,16 @@
public:
// Takes ownership of cost_function.
explicit CostFunctionToFunctor(CostFunction* cost_function)
- : cost_functor_(cost_function) {
- CHECK(cost_function != nullptr);
+ : CostFunctionToFunctor{std::unique_ptr<CostFunction>{cost_function}} {}
+
+ // Takes ownership of cost_function.
+ explicit CostFunctionToFunctor(std::unique_ptr<CostFunction> cost_function)
+ : cost_functor_(std::move(cost_function)) {
+ CHECK(cost_functor_.function() != nullptr);
CHECK(kNumResiduals > 0 || kNumResiduals == DYNAMIC);
const std::vector<int32_t>& parameter_block_sizes =
- cost_function->parameter_block_sizes();
+ cost_functor_.function()->parameter_block_sizes();
const int num_parameter_blocks = ParameterDims::kNumParameterBlocks;
CHECK_EQ(static_cast<int>(parameter_block_sizes.size()),
num_parameter_blocks);
diff --git a/include/ceres/dynamic_autodiff_cost_function.h b/include/ceres/dynamic_autodiff_cost_function.h
index e47f32f..2b8724d 100644
--- a/include/ceres/dynamic_autodiff_cost_function.h
+++ b/include/ceres/dynamic_autodiff_cost_function.h
@@ -1,5 +1,5 @@
// Ceres Solver - A fast non-linear least squares minimizer
-// Copyright 2023 Google Inc. All rights reserved.
+// Copyright 2024 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
@@ -35,6 +35,7 @@
#include <cmath>
#include <memory>
#include <numeric>
+#include <type_traits>
#include <vector>
#include "ceres/dynamic_cost_function.h"
@@ -65,8 +66,7 @@
// also specify the sizes after creating the dynamic autodiff cost
// function. For example:
//
-// DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function(
-// new MyCostFunctor());
+// DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function;
// cost_function.AddParameterBlock(5);
// cost_function.AddParameterBlock(10);
// cost_function.SetNumResiduals(21);
@@ -79,13 +79,34 @@
template <typename CostFunctor, int Stride = 4>
class DynamicAutoDiffCostFunction final : public DynamicCostFunction {
public:
+ // Constructs the CostFunctor on the heap and takes the ownership.
+ template <class... Args,
+ std::enable_if_t<std::is_constructible_v<CostFunctor, Args&&...>>* =
+ nullptr>
+ explicit DynamicAutoDiffCostFunction(Args&&... args)
+ // NOTE We explicitly use direct initialization using parentheses instead
+ // of uniform initialization using braces to avoid narrowing conversion
+ // warnings.
+ : DynamicAutoDiffCostFunction{
+ std::make_unique<CostFunctor>(std::forward<Args>(args)...)} {}
+
// Takes ownership by default.
explicit DynamicAutoDiffCostFunction(CostFunctor* functor,
Ownership ownership = TAKE_OWNERSHIP)
- : functor_(functor), ownership_(ownership) {}
+ : DynamicAutoDiffCostFunction{std::unique_ptr<CostFunctor>{functor},
+ ownership} {}
- DynamicAutoDiffCostFunction(DynamicAutoDiffCostFunction&& other)
- : functor_(std::move(other.functor_)), ownership_(other.ownership_) {}
+ explicit DynamicAutoDiffCostFunction(std::unique_ptr<CostFunctor> functor)
+ : DynamicAutoDiffCostFunction{std::move(functor), TAKE_OWNERSHIP} {}
+
+ DynamicAutoDiffCostFunction(const DynamicAutoDiffCostFunction& other) =
+ delete;
+ DynamicAutoDiffCostFunction& operator=(
+ const DynamicAutoDiffCostFunction& other) = delete;
+ DynamicAutoDiffCostFunction(DynamicAutoDiffCostFunction&& other) noexcept =
+ default;
+ DynamicAutoDiffCostFunction& operator=(
+ DynamicAutoDiffCostFunction&& other) noexcept = default;
~DynamicAutoDiffCostFunction() override {
// Manually release pointer if configured to not take ownership
@@ -267,6 +288,10 @@
const CostFunctor& functor() const { return *functor_; }
private:
+ explicit DynamicAutoDiffCostFunction(std::unique_ptr<CostFunctor> functor,
+ Ownership ownership)
+ : functor_(std::move(functor)), ownership_(ownership) {}
+
std::unique_ptr<CostFunctor> functor_;
Ownership ownership_;
};
@@ -276,10 +301,17 @@
// instantiated as follows:
//
// new DynamicAutoDiffCostFunction{new MyCostFunctor{}};
+// new DynamicAutoDiffCostFunction{std::make_unique<MyCostFunctor>()};
//
template <typename CostFunctor>
+DynamicAutoDiffCostFunction(CostFunctor* functor)
+ -> DynamicAutoDiffCostFunction<CostFunctor>;
+template <typename CostFunctor>
DynamicAutoDiffCostFunction(CostFunctor* functor, Ownership ownership)
-> DynamicAutoDiffCostFunction<CostFunctor>;
+template <typename CostFunctor>
+DynamicAutoDiffCostFunction(std::unique_ptr<CostFunctor> functor)
+ -> DynamicAutoDiffCostFunction<CostFunctor>;
} // namespace ceres
diff --git a/include/ceres/dynamic_cost_function_to_functor.h b/include/ceres/dynamic_cost_function_to_functor.h
index cd124a2..45ed90f 100644
--- a/include/ceres/dynamic_cost_function_to_functor.h
+++ b/include/ceres/dynamic_cost_function_to_functor.h
@@ -106,8 +106,14 @@
public:
// Takes ownership of cost_function.
explicit DynamicCostFunctionToFunctor(CostFunction* cost_function)
- : cost_function_(cost_function) {
- CHECK(cost_function != nullptr);
+ : DynamicCostFunctionToFunctor{
+ std::unique_ptr<CostFunction>{cost_function}} {}
+
+ // Takes ownership of cost_function.
+ explicit DynamicCostFunctionToFunctor(
+ std::unique_ptr<CostFunction> cost_function)
+ : cost_function_(std::move(cost_function)) {
+ CHECK(cost_function_ != nullptr);
}
bool operator()(double const* const* parameters, double* residuals) const {
@@ -183,6 +189,8 @@
return true;
}
+ CostFunction* function() const noexcept { return cost_function_.get(); }
+
private:
std::unique_ptr<CostFunction> cost_function_;
};
diff --git a/include/ceres/dynamic_numeric_diff_cost_function.h b/include/ceres/dynamic_numeric_diff_cost_function.h
index d9cd945..1ce384f 100644
--- a/include/ceres/dynamic_numeric_diff_cost_function.h
+++ b/include/ceres/dynamic_numeric_diff_cost_function.h
@@ -1,5 +1,5 @@
// Ceres Solver - A fast non-linear least squares minimizer
-// Copyright 2023 Google Inc. All rights reserved.
+// Copyright 2024 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
@@ -37,6 +37,7 @@
#include <cmath>
#include <memory>
#include <numeric>
+#include <type_traits>
#include <vector>
#include "ceres/dynamic_cost_function.h"
@@ -71,8 +72,7 @@
// also specify the sizes after creating the
// DynamicNumericDiffCostFunction. For example:
//
-// DynamicAutoDiffCostFunction<MyCostFunctor, CENTRAL> cost_function(
-// new MyCostFunctor());
+// DynamicAutoDiffCostFunction<MyCostFunctor, CENTRAL> cost_function;
// cost_function.AddParameterBlock(5);
// cost_function.AddParameterBlock(10);
// cost_function.SetNumResiduals(21);
@@ -83,10 +83,34 @@
const CostFunctor* functor,
Ownership ownership = TAKE_OWNERSHIP,
const NumericDiffOptions& options = NumericDiffOptions())
- : functor_(functor), ownership_(ownership), options_(options) {}
+ : DynamicNumericDiffCostFunction{
+ std::unique_ptr<const CostFunctor>{functor}, ownership, options} {}
- DynamicNumericDiffCostFunction(DynamicNumericDiffCostFunction&& other)
- : functor_(std::move(other.functor_)), ownership_(other.ownership_) {}
+ explicit DynamicNumericDiffCostFunction(
+ std::unique_ptr<const CostFunctor> functor,
+ const NumericDiffOptions& options = NumericDiffOptions())
+ : DynamicNumericDiffCostFunction{
+ std::move(functor), TAKE_OWNERSHIP, options} {}
+
+ // Constructs the CostFunctor on the heap and takes the ownership.
+ template <class... Args,
+ std::enable_if_t<std::is_constructible_v<CostFunctor, Args&&...>>* =
+ nullptr>
+ explicit DynamicNumericDiffCostFunction(Args&&... args)
+ // NOTE We explicitly use direct initialization using parentheses instead
+ // of uniform initialization using braces to avoid narrowing conversion
+ // warnings.
+ : DynamicNumericDiffCostFunction{
+ std::make_unique<CostFunctor>(std::forward<Args>(args)...)} {}
+
+ DynamicNumericDiffCostFunction(const DynamicNumericDiffCostFunction&) =
+ delete;
+ DynamicNumericDiffCostFunction& operator=(
+ const DynamicNumericDiffCostFunction&) = delete;
+ DynamicNumericDiffCostFunction(
+ DynamicNumericDiffCostFunction&& other) noexcept = default;
+ DynamicNumericDiffCostFunction& operator=(
+ DynamicNumericDiffCostFunction&& other) noexcept = default;
~DynamicNumericDiffCostFunction() override {
if (ownership_ != TAKE_OWNERSHIP) {
@@ -118,7 +142,7 @@
int parameters_size = accumulate(block_sizes.begin(), block_sizes.end(), 0);
std::vector<double> parameters_copy(parameters_size);
std::vector<double*> parameters_references_copy(block_sizes.size());
- parameters_references_copy[0] = ¶meters_copy[0];
+ parameters_references_copy[0] = parameters_copy.data();
for (size_t block = 1; block < block_sizes.size(); ++block) {
parameters_references_copy[block] =
parameters_references_copy[block - 1] + block_sizes[block - 1];
@@ -139,14 +163,15 @@
internal::DynamicParameterDims,
ceres::DYNAMIC,
ceres::DYNAMIC>::
- EvaluateJacobianForParameterBlock(functor_.get(),
- residuals,
- options_,
- this->num_residuals(),
- block,
- block_sizes[block],
- ¶meters_references_copy[0],
- jacobians[block])) {
+ EvaluateJacobianForParameterBlock(
+ functor_.get(),
+ residuals,
+ options_,
+ this->num_residuals(),
+ block,
+ block_sizes[block],
+ parameters_references_copy.data(),
+ jacobians[block])) {
return false;
}
}
@@ -154,11 +179,45 @@
}
private:
+ explicit DynamicNumericDiffCostFunction(
+ std::unique_ptr<const CostFunctor> functor,
+ Ownership ownership,
+ const NumericDiffOptions& options)
+ : functor_(std::move(functor)),
+ ownership_(ownership),
+ options_(options) {}
+
std::unique_ptr<const CostFunctor> functor_;
Ownership ownership_;
NumericDiffOptions options_;
};
+// Deduction guide that allows the user to avoid explicitly specifying the
+// template parameter of DynamicNumericDiffCostFunction. The class can instead
+// be instantiated as follows:
+//
+// new DynamicNumericDiffCostFunction{new MyCostFunctor{}};
+// new DynamicNumericDiffCostFunction{std::make_unique<MyCostFunctor>()};
+//
+template <typename CostFunctor>
+DynamicNumericDiffCostFunction(CostFunctor* functor)
+ -> DynamicNumericDiffCostFunction<CostFunctor>;
+template <typename CostFunctor>
+DynamicNumericDiffCostFunction(CostFunctor* functor, Ownership ownership)
+ -> DynamicNumericDiffCostFunction<CostFunctor>;
+template <typename CostFunctor>
+DynamicNumericDiffCostFunction(CostFunctor* functor,
+ Ownership ownership,
+ const NumericDiffOptions& options)
+ -> DynamicNumericDiffCostFunction<CostFunctor>;
+template <typename CostFunctor>
+DynamicNumericDiffCostFunction(std::unique_ptr<CostFunctor> functor)
+ -> DynamicNumericDiffCostFunction<CostFunctor>;
+template <typename CostFunctor>
+DynamicNumericDiffCostFunction(std::unique_ptr<CostFunctor> functor,
+ const NumericDiffOptions& options)
+ -> DynamicNumericDiffCostFunction<CostFunctor>;
+
} // namespace ceres
#endif // CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_
diff --git a/include/ceres/numeric_diff_cost_function.h b/include/ceres/numeric_diff_cost_function.h
index 00a7d53..f2a377b 100644
--- a/include/ceres/numeric_diff_cost_function.h
+++ b/include/ceres/numeric_diff_cost_function.h
@@ -1,5 +1,5 @@
// Ceres Solver - A fast non-linear least squares minimizer
-// Copyright 2023 Google Inc. All rights reserved.
+// Copyright 2024 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
@@ -149,9 +149,8 @@
// The numerically differentiated version of a cost function for a cost function
// can be constructed as follows:
//
-// CostFunction* cost_function
-// = new NumericDiffCostFunction<MyCostFunction, CENTRAL, 1, 4, 8>(
-// new MyCostFunction(...), TAKE_OWNERSHIP);
+// auto* cost_function
+// = new NumericDiffCostFunction<MyCostFunction, CENTRAL, 1, 4, 8>();
//
// where MyCostFunction has 1 residual and 2 parameter blocks with sizes 4 and 8
// respectively. Look at the tests for a more detailed example.
@@ -163,6 +162,7 @@
#include <array>
#include <memory>
+#include <type_traits>
#include "Eigen/Dense"
#include "ceres/cost_function.h"
@@ -171,7 +171,6 @@
#include "ceres/numeric_diff_options.h"
#include "ceres/sized_cost_function.h"
#include "ceres/types.h"
-#include "glog/logging.h"
namespace ceres {
@@ -187,16 +186,40 @@
Ownership ownership = TAKE_OWNERSHIP,
int num_residuals = kNumResiduals,
const NumericDiffOptions& options = NumericDiffOptions())
- : functor_(functor), ownership_(ownership), options_(options) {
- if (kNumResiduals == DYNAMIC) {
- SizedCostFunction<kNumResiduals, Ns...>::set_num_residuals(num_residuals);
- }
- }
+ : NumericDiffCostFunction{std::unique_ptr<CostFunctor>{functor},
+ ownership,
+ num_residuals,
+ options} {}
- NumericDiffCostFunction(NumericDiffCostFunction&& other)
- : functor_(std::move(other.functor_)), ownership_(other.ownership_) {}
+ explicit NumericDiffCostFunction(
+ std::unique_ptr<CostFunctor> functor,
+ int num_residuals = kNumResiduals,
+ const NumericDiffOptions& options = NumericDiffOptions())
+ : NumericDiffCostFunction{
+ std::move(functor), TAKE_OWNERSHIP, num_residuals, options} {}
- virtual ~NumericDiffCostFunction() {
+ // Constructs the CostFunctor on the heap and takes the ownership.
+ // Invocable only if the number of residuals is known at compile-time.
+ template <class... Args,
+ bool kIsDynamic = kNumResiduals == DYNAMIC,
+ std::enable_if_t<!kIsDynamic &&
+ std::is_constructible_v<CostFunctor, Args&&...>>* =
+ nullptr>
+ explicit NumericDiffCostFunction(Args&&... args)
+ // NOTE We explicitly use direct initialization using parentheses instead
+ // of uniform initialization using braces to avoid narrowing conversion
+ // warnings.
+ : NumericDiffCostFunction{
+ std::make_unique<CostFunctor>(std::forward<Args>(args)...),
+ TAKE_OWNERSHIP} {}
+
+ NumericDiffCostFunction(NumericDiffCostFunction&& other) noexcept = default;
+ NumericDiffCostFunction& operator=(NumericDiffCostFunction&& other) noexcept =
+ default;
+ NumericDiffCostFunction(const NumericDiffCostFunction&) = delete;
+ NumericDiffCostFunction& operator=(const NumericDiffCostFunction&) = delete;
+
+ ~NumericDiffCostFunction() override {
if (ownership_ != TAKE_OWNERSHIP) {
functor_.release();
}
@@ -250,6 +273,16 @@
const CostFunctor& functor() const { return *functor_; }
private:
+ explicit NumericDiffCostFunction(std::unique_ptr<CostFunctor> functor,
+ Ownership ownership,
+ [[maybe_unused]] int num_residuals,
+ const NumericDiffOptions& options)
+ : functor_(std::move(functor)), ownership_(ownership), options_(options) {
+ if constexpr (kNumResiduals == DYNAMIC) {
+ SizedCostFunction<kNumResiduals, Ns...>::set_num_residuals(num_residuals);
+ }
+ }
+
std::unique_ptr<CostFunctor> functor_;
Ownership ownership_;
NumericDiffOptions options_;
diff --git a/include/ceres/numeric_diff_first_order_function.h b/include/ceres/numeric_diff_first_order_function.h
index ccd420c..525f197 100644
--- a/include/ceres/numeric_diff_first_order_function.h
+++ b/include/ceres/numeric_diff_first_order_function.h
@@ -33,6 +33,8 @@
#include <algorithm>
#include <memory>
+#include <type_traits>
+#include <utility>
#include "ceres/first_order_function.h"
#include "ceres/internal/eigen.h"
@@ -115,21 +117,41 @@
int kNumParameters = DYNAMIC>
class NumericDiffFirstOrderFunction final : public FirstOrderFunction {
public:
+ template <class... Args,
+ bool kIsDynamic = kNumParameters == DYNAMIC,
+ std::enable_if_t<!kIsDynamic &&
+ std::is_constructible_v<FirstOrderFunctor,
+ Args&&...>>* = nullptr>
+ explicit NumericDiffFirstOrderFunction(Args&&... args)
+ : NumericDiffFirstOrderFunction{std::make_unique<FirstOrderFunction>(
+ std::forward<Args>(args)...)} {}
+
+ NumericDiffFirstOrderFunction(const NumericDiffFirstOrderFunction&) = delete;
+ NumericDiffFirstOrderFunction& operator=(
+ const NumericDiffFirstOrderFunction&) = delete;
+ NumericDiffFirstOrderFunction(
+ NumericDiffFirstOrderFunction&& other) noexcept = default;
+ NumericDiffFirstOrderFunction& operator=(
+ NumericDiffFirstOrderFunction&& other) noexcept = default;
+
// Constructor for the case where the parameter size is known at compile time.
explicit NumericDiffFirstOrderFunction(
FirstOrderFunctor* functor,
Ownership ownership = TAKE_OWNERSHIP,
const NumericDiffOptions& options = NumericDiffOptions())
- : functor_(functor),
- num_parameters_(kNumParameters),
- ownership_(ownership),
- options_(options) {
- static_assert(kNumParameters != DYNAMIC,
- "Number of parameters must be static when defined via the "
- "template parameter. Use the other constructor for "
- "dynamically sized functions.");
- static_assert(kNumParameters > 0, "kNumParameters must be positive");
- }
+ : NumericDiffFirstOrderFunction{
+ std::unique_ptr<FirstOrderFunctor>{functor},
+ kNumParameters,
+ ownership,
+ options,
+ FIXED_INIT} {}
+
+ // Constructor for the case where the parameter size is known at compile time.
+ explicit NumericDiffFirstOrderFunction(
+ std::unique_ptr<FirstOrderFunctor> functor,
+ const NumericDiffOptions& options = NumericDiffOptions())
+ : NumericDiffFirstOrderFunction{
+ std::move(functor), kNumParameters, TAKE_OWNERSHIP, FIXED_INIT} {}
// Constructor for the case where the parameter size is specified at run time.
explicit NumericDiffFirstOrderFunction(
@@ -137,17 +159,24 @@
int num_parameters,
Ownership ownership = TAKE_OWNERSHIP,
const NumericDiffOptions& options = NumericDiffOptions())
- : functor_(functor),
- num_parameters_(num_parameters),
- ownership_(ownership),
- options_(options) {
- static_assert(
- kNumParameters == DYNAMIC,
- "Template parameter must be DYNAMIC when using this constructor. If "
- "you want to provide the number of parameters statically use the other "
- "constructor.");
- CHECK_GT(num_parameters, 0);
- }
+ : NumericDiffFirstOrderFunction{
+ std::unique_ptr<FirstOrderFunctor>{functor},
+ num_parameters,
+ ownership,
+ options,
+ DYNAMIC_INIT} {}
+
+ // Constructor for the case where the parameter size is specified at run time.
+ explicit NumericDiffFirstOrderFunction(
+ std::unique_ptr<FirstOrderFunctor> functor,
+ int num_parameters,
+ Ownership ownership = TAKE_OWNERSHIP,
+ const NumericDiffOptions& options = NumericDiffOptions())
+ : NumericDiffFirstOrderFunction{std::move(functor),
+ num_parameters,
+ ownership,
+ options,
+ DYNAMIC_INIT} {}
~NumericDiffFirstOrderFunction() override {
if (ownership_ != TAKE_OWNERSHIP) {
@@ -205,10 +234,36 @@
const FirstOrderFunctor& functor() const { return *functor_; }
private:
+ // Tags used to differentiate between dynamic and fixed size constructor
+ // delegate invocations.
+ static constexpr std::integral_constant<int, DYNAMIC> DYNAMIC_INIT{};
+ static constexpr std::integral_constant<int, kNumParameters> FIXED_INIT{};
+
+ template <class InitTag>
+ explicit NumericDiffFirstOrderFunction(
+ std::unique_ptr<FirstOrderFunctor> functor,
+ int num_parameters,
+ Ownership ownership,
+ const NumericDiffOptions& options,
+ InitTag /*unused*/)
+ : functor_(std::move(functor)),
+ num_parameters_(num_parameters),
+ ownership_(ownership),
+ options_(options) {
+ static_assert(
+ kNumParameters == FIXED_INIT,
+ "Template parameter must be DYNAMIC when using this constructor. If "
+ "you want to provide the number of parameters statically use the other "
+ "constructor.");
+ if constexpr (InitTag::value == DYNAMIC_INIT) {
+ CHECK_GT(num_parameters, 0);
+ }
+ }
+
std::unique_ptr<FirstOrderFunctor> functor_;
- const int num_parameters_;
- const Ownership ownership_;
- const NumericDiffOptions options_;
+ int num_parameters_;
+ Ownership ownership_;
+ NumericDiffOptions options_;
};
} // namespace ceres
diff --git a/include/ceres/sized_cost_function.h b/include/ceres/sized_cost_function.h
index d594cfe..8928c19 100644
--- a/include/ceres/sized_cost_function.h
+++ b/include/ceres/sized_cost_function.h
@@ -1,5 +1,5 @@
// Ceres Solver - A fast non-linear least squares minimizer
-// Copyright 2023 Google Inc. All rights reserved.
+// Copyright 2024 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
@@ -38,9 +38,10 @@
#ifndef CERES_PUBLIC_SIZED_COST_FUNCTION_H_
#define CERES_PUBLIC_SIZED_COST_FUNCTION_H_
+#include <initializer_list>
+
#include "ceres/cost_function.h"
#include "ceres/types.h"
-#include "glog/logging.h"
#include "internal/parameter_dims.h"
namespace ceres {
@@ -58,7 +59,7 @@
SizedCostFunction() {
set_num_residuals(kNumResiduals);
- *mutable_parameter_block_sizes() = std::vector<int32_t>{Ns...};
+ *mutable_parameter_block_sizes() = std::initializer_list<int32_t>{Ns...};
}
// Subclasses must implement Evaluate().
diff --git a/internal/ceres/autodiff_cost_function_test.cc b/internal/ceres/autodiff_cost_function_test.cc
index f456486..dca67ba 100644
--- a/internal/ceres/autodiff_cost_function_test.cc
+++ b/internal/ceres/autodiff_cost_function_test.cc
@@ -1,5 +1,5 @@
// Ceres Solver - A fast non-linear least squares minimizer
-// Copyright 2023 Google Inc. All rights reserved.
+// Copyright 2024 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
@@ -178,4 +178,24 @@
EXPECT_FALSE(IsArrayValid(2, residuals));
}
+TEST(AutodiffCostFunction, ArgumentForwarding) {
+ // No narrowing conversion warning should be emitted
+ auto cost_function1 =
+ std::make_unique<AutoDiffCostFunction<BinaryScalarCost, 1, 2, 2>>(1);
+ auto cost_function2 =
+ std::make_unique<AutoDiffCostFunction<BinaryScalarCost, 1, 2, 2>>(2.0);
+ // Default constructible functor
+ auto cost_function3 =
+ std::make_unique<AutoDiffCostFunction<OnlyFillsOneOutputFunctor, 1, 1>>();
+}
+
+TEST(AutodiffCostFunction, UniquePtrCtor) {
+ auto cost_function1 =
+ std::make_unique<AutoDiffCostFunction<BinaryScalarCost, 1, 2, 2>>(
+ std::make_unique<BinaryScalarCost>(1));
+ auto cost_function2 =
+ std::make_unique<AutoDiffCostFunction<BinaryScalarCost, 1, 2, 2>>(
+ std::make_unique<BinaryScalarCost>(2.0));
+}
+
} // namespace ceres::internal
diff --git a/internal/ceres/cost_function.cc b/internal/ceres/cost_function.cc
index abd53dd..543348f 100644
--- a/internal/ceres/cost_function.cc
+++ b/internal/ceres/cost_function.cc
@@ -1,5 +1,5 @@
// Ceres Solver - A fast non-linear least squares minimizer
-// Copyright 2023 Google Inc. All rights reserved.
+// Copyright 2024 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
@@ -33,6 +33,8 @@
namespace ceres {
+CostFunction::CostFunction(CostFunction&& other) noexcept = default;
+CostFunction& CostFunction::operator=(CostFunction&& other) noexcept = default;
CostFunction::CostFunction() : num_residuals_(0) {}
CostFunction::~CostFunction() = default;
diff --git a/internal/ceres/cost_function_to_functor_test.cc b/internal/ceres/cost_function_to_functor_test.cc
index 817d6f3..c3fed66 100644
--- a/internal/ceres/cost_function_to_functor_test.cc
+++ b/internal/ceres/cost_function_to_functor_test.cc
@@ -391,4 +391,39 @@
ExpectCostFunctionsAreEqual(cost_function, *actual_cost_function);
}
+TEST(CostFunctionToFunctor, UniquePtrArgumentForwarding) {
+ auto cost_function = std::make_unique<
+ AutoDiffCostFunction<CostFunctionToFunctor<ceres::DYNAMIC, 2, 2>,
+ ceres::DYNAMIC,
+ 2,
+ 2>>(
+ std::make_unique<CostFunctionToFunctor<ceres::DYNAMIC, 2, 2>>(
+ std::make_unique<
+ AutoDiffCostFunction<TwoParameterBlockFunctor, 2, 2, 2>>()),
+ 2);
+
+ auto actual_cost_function = std::make_unique<
+ AutoDiffCostFunction<TwoParameterBlockFunctor, 2, 2, 2>>();
+ ExpectCostFunctionsAreEqual(*cost_function, *actual_cost_function);
+}
+
+TEST(CostFunctionToFunctor, DynamicCostFunctionToFunctorUniquePtr) {
+ auto actual_cost_function = std::make_unique<
+ DynamicAutoDiffCostFunction<DynamicTwoParameterBlockFunctor>>();
+ actual_cost_function->AddParameterBlock(2);
+ actual_cost_function->AddParameterBlock(2);
+ actual_cost_function->SetNumResiduals(2);
+
+ // Use deduction guides for a more compact variable definition
+ DynamicAutoDiffCostFunction cost_function(
+ std::make_unique<DynamicCostFunctionToFunctor>(
+ std::move(actual_cost_function)));
+ cost_function.AddParameterBlock(2);
+ cost_function.AddParameterBlock(2);
+ cost_function.SetNumResiduals(2);
+
+ ExpectCostFunctionsAreEqual(cost_function,
+ *cost_function.functor().function());
+}
+
} // namespace ceres::internal
diff --git a/internal/ceres/dynamic_autodiff_cost_function_test.cc b/internal/ceres/dynamic_autodiff_cost_function_test.cc
index 1cf83a5..d42b3e9 100644
--- a/internal/ceres/dynamic_autodiff_cost_function_test.cc
+++ b/internal/ceres/dynamic_autodiff_cost_function_test.cc
@@ -1,5 +1,5 @@
// Ceres Solver - A fast non-linear least squares minimizer
-// Copyright 2023 Google Inc. All rights reserved.
+// Copyright 2024 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
@@ -806,6 +806,16 @@
TEST(DynamicAutoDiffCostFunctionTest, DeductionTemplateCompilationTest) {
// Ensure deduction guide to be working
(void)DynamicAutoDiffCostFunction(new MyCostFunctor());
+ (void)DynamicAutoDiffCostFunction(new MyCostFunctor(), TAKE_OWNERSHIP);
+ (void)DynamicAutoDiffCostFunction(std::make_unique<MyCostFunctor>());
+}
+
+TEST(DynamicAutoDiffCostFunctionTest, ArgumentForwarding) {
+ (void)DynamicAutoDiffCostFunction<MyCostFunctor>();
+}
+
+TEST(DynamicAutoDiffCostFunctionTest, UniquePtr) {
+ (void)DynamicAutoDiffCostFunction(std::make_unique<MyCostFunctor>());
}
} // namespace ceres::internal
diff --git a/internal/ceres/dynamic_numeric_diff_cost_function_test.cc b/internal/ceres/dynamic_numeric_diff_cost_function_test.cc
index aba90e2..4f408ed 100644
--- a/internal/ceres/dynamic_numeric_diff_cost_function_test.cc
+++ b/internal/ceres/dynamic_numeric_diff_cost_function_test.cc
@@ -1,5 +1,5 @@
// Ceres Solver - A fast non-linear least squares minimizer
-// Copyright 2023 Google Inc. All rights reserved.
+// Copyright 2024 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
@@ -508,4 +508,24 @@
}
}
+TEST(DynamicNumericdiffCostFunctionTest, DeductionTemplateCompilationTest) {
+ // Ensure deduction guide to be working
+ (void)DynamicNumericDiffCostFunction{std::make_unique<MyCostFunctor>()};
+ (void)DynamicNumericDiffCostFunction{std::make_unique<MyCostFunctor>(),
+ NumericDiffOptions{}};
+ (void)DynamicNumericDiffCostFunction{new MyCostFunctor};
+ (void)DynamicNumericDiffCostFunction{new MyCostFunctor, TAKE_OWNERSHIP};
+ (void)DynamicNumericDiffCostFunction{
+ new MyCostFunctor, TAKE_OWNERSHIP, NumericDiffOptions{}};
+}
+
+TEST(DynamicNumericdiffCostFunctionTest, ArgumentForwarding) {
+ (void)DynamicNumericDiffCostFunction<MyCostFunctor>();
+}
+
+TEST(DynamicAutoDiffCostFunctionTest, UniquePtr) {
+ (void)DynamicNumericDiffCostFunction<MyCostFunctor>(
+ std::make_unique<MyCostFunctor>());
+}
+
} // namespace ceres::internal
diff --git a/internal/ceres/numeric_diff_cost_function_test.cc b/internal/ceres/numeric_diff_cost_function_test.cc
index 4695548..0c9074a 100644
--- a/internal/ceres/numeric_diff_cost_function_test.cc
+++ b/internal/ceres/numeric_diff_cost_function_test.cc
@@ -1,5 +1,5 @@
// Ceres Solver - A fast non-linear least squares minimizer
-// Copyright 2023 Google Inc. All rights reserved.
+// Copyright 2024 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
@@ -46,8 +46,7 @@
#include "glog/logging.h"
#include "gtest/gtest.h"
-namespace ceres {
-namespace internal {
+namespace ceres::internal {
TEST(NumericDiffCostFunction, EasyCaseFunctorCentralDifferences) {
auto cost_function =
@@ -438,5 +437,28 @@
}
}
-} // namespace internal
-} // namespace ceres
+struct MultiArgFunctor {
+ explicit MultiArgFunctor(int a, double c) {}
+ template <class T>
+ bool operator()(const T* params, T* residuals) const noexcept {
+ return false;
+ }
+};
+
+TEST(NumericDiffCostFunction, ArgumentForwarding) {
+ auto cost_function1 = std::make_unique<
+ NumericDiffCostFunction<EasyFunctor, CENTRAL, 3, 5, 5>>();
+ auto cost_function2 =
+ std::make_unique<NumericDiffCostFunction<MultiArgFunctor, CENTRAL, 1, 1>>(
+ 1, 2);
+}
+
+TEST(NumericDiffCostFunction, UniquePtrCtor) {
+ auto cost_function1 =
+ std::make_unique<NumericDiffCostFunction<EasyFunctor, CENTRAL, 3, 5, 5>>(
+ std::make_unique<EasyFunctor>());
+ auto cost_function2 = std::make_unique<
+ NumericDiffCostFunction<EasyFunctor, CENTRAL, 3, 5, 5>>();
+}
+
+} // namespace ceres::internal