| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2022 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/visibility_based_preconditioner.h" |
| |
| #include <algorithm> |
| #include <functional> |
| #include <iterator> |
| #include <memory> |
| #include <set> |
| #include <string> |
| #include <unordered_set> |
| #include <utility> |
| #include <vector> |
| |
| #include "Eigen/Dense" |
| #include "ceres/block_random_access_sparse_matrix.h" |
| #include "ceres/block_sparse_matrix.h" |
| #include "ceres/canonical_views_clustering.h" |
| #include "ceres/graph.h" |
| #include "ceres/graph_algorithms.h" |
| #include "ceres/linear_solver.h" |
| #include "ceres/schur_eliminator.h" |
| #include "ceres/single_linkage_clustering.h" |
| #include "ceres/visibility.h" |
| #include "glog/logging.h" |
| |
| namespace ceres::internal { |
| |
| // TODO(sameeragarwal): Currently these are magic weights for the |
| // preconditioner construction. Move these higher up into the Options |
| // struct and provide some guidelines for choosing them. |
| // |
| // This will require some more work on the clustering algorithm and |
| // possibly some more refactoring of the code. |
| static constexpr double kCanonicalViewsSizePenaltyWeight = 3.0; |
| static constexpr double kCanonicalViewsSimilarityPenaltyWeight = 0.0; |
| static constexpr double kSingleLinkageMinSimilarity = 0.9; |
| |
| VisibilityBasedPreconditioner::VisibilityBasedPreconditioner( |
| const CompressedRowBlockStructure& bs, Preconditioner::Options options) |
| : options_(std::move(options)), num_blocks_(0), num_clusters_(0) { |
| CHECK_GT(options_.elimination_groups.size(), 1); |
| CHECK_GT(options_.elimination_groups[0], 0); |
| CHECK(options_.type == CLUSTER_JACOBI || options_.type == CLUSTER_TRIDIAGONAL) |
| << "Unknown preconditioner type: " << options_.type; |
| num_blocks_ = bs.cols.size() - options_.elimination_groups[0]; |
| CHECK_GT(num_blocks_, 0) << "Jacobian should have at least 1 f_block for " |
| << "visibility based preconditioning."; |
| CHECK(options_.context != nullptr); |
| |
| // Vector of camera block sizes |
| blocks_ = Tail(bs.cols, bs.cols.size() - options_.elimination_groups[0]); |
| |
| const time_t start_time = time(nullptr); |
| switch (options_.type) { |
| case CLUSTER_JACOBI: |
| ComputeClusterJacobiSparsity(bs); |
| break; |
| case CLUSTER_TRIDIAGONAL: |
| ComputeClusterTridiagonalSparsity(bs); |
| break; |
| default: |
| LOG(FATAL) << "Unknown preconditioner type"; |
| } |
| const time_t structure_time = time(nullptr); |
| InitStorage(bs); |
| const time_t storage_time = time(nullptr); |
| InitEliminator(bs); |
| const time_t eliminator_time = time(nullptr); |
| |
| LinearSolver::Options sparse_cholesky_options; |
| sparse_cholesky_options.sparse_linear_algebra_library_type = |
| options_.sparse_linear_algebra_library_type; |
| sparse_cholesky_options.ordering_type = options_.ordering_type; |
| sparse_cholesky_ = SparseCholesky::Create(sparse_cholesky_options); |
| |
| const time_t init_time = time(nullptr); |
| VLOG(2) << "init time: " << init_time - start_time |
| << " structure time: " << structure_time - start_time |
| << " storage time:" << storage_time - structure_time |
| << " eliminator time: " << eliminator_time - storage_time; |
| } |
| |
| VisibilityBasedPreconditioner::~VisibilityBasedPreconditioner() = default; |
| |
| // Determine the sparsity structure of the CLUSTER_JACOBI |
| // preconditioner. It clusters cameras using their scene |
| // visibility. The clusters form the diagonal blocks of the |
| // preconditioner matrix. |
| void VisibilityBasedPreconditioner::ComputeClusterJacobiSparsity( |
| const CompressedRowBlockStructure& bs) { |
| std::vector<std::set<int>> visibility; |
| ComputeVisibility(bs, options_.elimination_groups[0], &visibility); |
| CHECK_EQ(num_blocks_, visibility.size()); |
| ClusterCameras(visibility); |
| cluster_pairs_.clear(); |
| for (int i = 0; i < num_clusters_; ++i) { |
| cluster_pairs_.insert(std::make_pair(i, i)); |
| } |
| } |
| |
| // Determine the sparsity structure of the CLUSTER_TRIDIAGONAL |
| // preconditioner. It clusters cameras using the scene visibility and |
| // then finds the strongly interacting pairs of clusters by |
| // constructing another graph with the clusters as vertices and |
| // approximating it with a degree-2 maximum spanning forest. The set |
| // of edges in this forest are the cluster pairs. |
| void VisibilityBasedPreconditioner::ComputeClusterTridiagonalSparsity( |
| const CompressedRowBlockStructure& bs) { |
| std::vector<std::set<int>> visibility; |
| ComputeVisibility(bs, options_.elimination_groups[0], &visibility); |
| CHECK_EQ(num_blocks_, visibility.size()); |
| ClusterCameras(visibility); |
| |
| // Construct a weighted graph on the set of clusters, where the |
| // edges are the number of 3D points/e_blocks visible in both the |
| // clusters at the ends of the edge. Return an approximate degree-2 |
| // maximum spanning forest of this graph. |
| std::vector<std::set<int>> cluster_visibility; |
| ComputeClusterVisibility(visibility, &cluster_visibility); |
| auto cluster_graph = CreateClusterGraph(cluster_visibility); |
| CHECK(cluster_graph != nullptr); |
| auto forest = Degree2MaximumSpanningForest(*cluster_graph); |
| CHECK(forest != nullptr); |
| ForestToClusterPairs(*forest, &cluster_pairs_); |
| } |
| |
| // Allocate storage for the preconditioner matrix. |
| void VisibilityBasedPreconditioner::InitStorage( |
| const CompressedRowBlockStructure& bs) { |
| ComputeBlockPairsInPreconditioner(bs); |
| m_ = std::make_unique<BlockRandomAccessSparseMatrix>(blocks_, block_pairs_); |
| } |
| |
| // Call the canonical views algorithm and cluster the cameras based on |
| // their visibility sets. The visibility set of a camera is the set of |
| // e_blocks/3D points in the scene that are seen by it. |
| // |
| // The cluster_membership_ vector is updated to indicate cluster |
| // memberships for each camera block. |
| void VisibilityBasedPreconditioner::ClusterCameras( |
| const std::vector<std::set<int>>& visibility) { |
| auto schur_complement_graph = CreateSchurComplementGraph(visibility); |
| CHECK(schur_complement_graph != nullptr); |
| |
| std::unordered_map<int, int> membership; |
| |
| if (options_.visibility_clustering_type == CANONICAL_VIEWS) { |
| std::vector<int> centers; |
| CanonicalViewsClusteringOptions clustering_options; |
| clustering_options.size_penalty_weight = kCanonicalViewsSizePenaltyWeight; |
| clustering_options.similarity_penalty_weight = |
| kCanonicalViewsSimilarityPenaltyWeight; |
| ComputeCanonicalViewsClustering( |
| clustering_options, *schur_complement_graph, ¢ers, &membership); |
| num_clusters_ = centers.size(); |
| } else if (options_.visibility_clustering_type == SINGLE_LINKAGE) { |
| SingleLinkageClusteringOptions clustering_options; |
| clustering_options.min_similarity = kSingleLinkageMinSimilarity; |
| num_clusters_ = ComputeSingleLinkageClustering( |
| clustering_options, *schur_complement_graph, &membership); |
| } else { |
| LOG(FATAL) << "Unknown visibility clustering algorithm."; |
| } |
| |
| CHECK_GT(num_clusters_, 0); |
| VLOG(2) << "num_clusters: " << num_clusters_; |
| FlattenMembershipMap(membership, &cluster_membership_); |
| } |
| |
| // Compute the block sparsity structure of the Schur complement |
| // matrix. For each pair of cameras contributing a non-zero cell to |
| // the schur complement, determine if that cell is present in the |
| // preconditioner or not. |
| // |
| // A pair of cameras contribute a cell to the preconditioner if they |
| // are part of the same cluster or if the two clusters that they |
| // belong have an edge connecting them in the degree-2 maximum |
| // spanning forest. |
| // |
| // For example, a camera pair (i,j) where i belongs to cluster1 and |
| // j belongs to cluster2 (assume that cluster1 < cluster2). |
| // |
| // The cell corresponding to (i,j) is present in the preconditioner |
| // if cluster1 == cluster2 or the pair (cluster1, cluster2) were |
| // connected by an edge in the degree-2 maximum spanning forest. |
| // |
| // Since we have already expanded the forest into a set of camera |
| // pairs/edges, including self edges, the check can be reduced to |
| // checking membership of (cluster1, cluster2) in cluster_pairs_. |
| void VisibilityBasedPreconditioner::ComputeBlockPairsInPreconditioner( |
| const CompressedRowBlockStructure& bs) { |
| block_pairs_.clear(); |
| for (int i = 0; i < num_blocks_; ++i) { |
| block_pairs_.insert(std::make_pair(i, i)); |
| } |
| |
| int r = 0; |
| const int num_row_blocks = bs.rows.size(); |
| const int num_eliminate_blocks = options_.elimination_groups[0]; |
| |
| // Iterate over each row of the matrix. The block structure of the |
| // matrix is assumed to be sorted in order of the e_blocks/point |
| // blocks. Thus all row blocks containing an e_block/point occur |
| // contiguously. Further, if present, an e_block is always the first |
| // parameter block in each row block. These structural assumptions |
| // are common to all Schur complement based solvers in Ceres. |
| // |
| // For each e_block/point block we identify the set of cameras |
| // seeing it. The cross product of this set with itself is the set |
| // of non-zero cells contributed by this e_block. |
| // |
| // The time complexity of this is O(nm^2) where, n is the number of |
| // 3d points and m is the maximum number of cameras seeing any |
| // point, which for most scenes is a fairly small number. |
| while (r < num_row_blocks) { |
| int e_block_id = bs.rows[r].cells.front().block_id; |
| if (e_block_id >= num_eliminate_blocks) { |
| // Skip the rows whose first block is an f_block. |
| break; |
| } |
| |
| std::set<int> f_blocks; |
| for (; r < num_row_blocks; ++r) { |
| const CompressedRow& row = bs.rows[r]; |
| if (row.cells.front().block_id != e_block_id) { |
| break; |
| } |
| |
| // Iterate over the blocks in the row, ignoring the first block |
| // since it is the one to be eliminated and adding the rest to |
| // the list of f_blocks associated with this e_block. |
| for (int c = 1; c < row.cells.size(); ++c) { |
| const Cell& cell = row.cells[c]; |
| const int f_block_id = cell.block_id - num_eliminate_blocks; |
| CHECK_GE(f_block_id, 0); |
| f_blocks.insert(f_block_id); |
| } |
| } |
| |
| for (auto block1 = f_blocks.begin(); block1 != f_blocks.end(); ++block1) { |
| auto block2 = block1; |
| ++block2; |
| for (; block2 != f_blocks.end(); ++block2) { |
| if (IsBlockPairInPreconditioner(*block1, *block2)) { |
| block_pairs_.emplace(*block1, *block2); |
| } |
| } |
| } |
| } |
| |
| // The remaining rows which do not contain any e_blocks. |
| for (; r < num_row_blocks; ++r) { |
| const CompressedRow& row = bs.rows[r]; |
| CHECK_GE(row.cells.front().block_id, num_eliminate_blocks); |
| for (int i = 0; i < row.cells.size(); ++i) { |
| const int block1 = row.cells[i].block_id - num_eliminate_blocks; |
| for (const auto& cell : row.cells) { |
| const int block2 = cell.block_id - num_eliminate_blocks; |
| if (block1 <= block2) { |
| if (IsBlockPairInPreconditioner(block1, block2)) { |
| block_pairs_.insert(std::make_pair(block1, block2)); |
| } |
| } |
| } |
| } |
| } |
| |
| VLOG(1) << "Block pair stats: " << block_pairs_.size(); |
| } |
| |
| // Initialize the SchurEliminator. |
| void VisibilityBasedPreconditioner::InitEliminator( |
| const CompressedRowBlockStructure& bs) { |
| LinearSolver::Options eliminator_options; |
| eliminator_options.elimination_groups = options_.elimination_groups; |
| eliminator_options.num_threads = options_.num_threads; |
| eliminator_options.e_block_size = options_.e_block_size; |
| eliminator_options.f_block_size = options_.f_block_size; |
| eliminator_options.row_block_size = options_.row_block_size; |
| eliminator_options.context = options_.context; |
| eliminator_ = SchurEliminatorBase::Create(eliminator_options); |
| const bool kFullRankETE = true; |
| eliminator_->Init( |
| eliminator_options.elimination_groups[0], kFullRankETE, &bs); |
| } |
| |
| // Update the values of the preconditioner matrix and factorize it. |
| bool VisibilityBasedPreconditioner::UpdateImpl(const BlockSparseMatrix& A, |
| const double* D) { |
| const time_t start_time = time(nullptr); |
| const int num_rows = m_->num_rows(); |
| CHECK_GT(num_rows, 0); |
| |
| // Compute a subset of the entries of the Schur complement. |
| eliminator_->Eliminate( |
| BlockSparseMatrixData(A), nullptr, D, m_.get(), nullptr); |
| |
| // Try factorizing the matrix. For CLUSTER_JACOBI, this should |
| // always succeed modulo some numerical/conditioning problems. For |
| // CLUSTER_TRIDIAGONAL, in general the preconditioner matrix as |
| // constructed is not positive definite. However, we will go ahead |
| // and try factorizing it. If it works, great, otherwise we scale |
| // all the cells in the preconditioner corresponding to the edges in |
| // the degree-2 forest and that guarantees positive |
| // definiteness. The proof of this fact can be found in Lemma 1 in |
| // "Visibility Based Preconditioning for Bundle Adjustment". |
| // |
| // Doing the factorization like this saves us matrix mass when |
| // scaling is not needed, which is quite often in our experience. |
| LinearSolverTerminationType status = Factorize(); |
| |
| if (status == LinearSolverTerminationType::FATAL_ERROR) { |
| return false; |
| } |
| |
| // The scaling only affects the tri-diagonal case, since |
| // ScaleOffDiagonalBlocks only pays attention to the cells that |
| // belong to the edges of the degree-2 forest. In the CLUSTER_JACOBI |
| // case, the preconditioner is guaranteed to be positive |
| // semidefinite. |
| if (status == LinearSolverTerminationType::FAILURE && |
| options_.type == CLUSTER_TRIDIAGONAL) { |
| VLOG(1) << "Unscaled factorization failed. Retrying with off-diagonal " |
| << "scaling"; |
| ScaleOffDiagonalCells(); |
| status = Factorize(); |
| } |
| |
| VLOG(2) << "Compute time: " << time(nullptr) - start_time; |
| return (status == LinearSolverTerminationType::SUCCESS); |
| } |
| |
| // Consider the preconditioner matrix as meta-block matrix, whose |
| // blocks correspond to the clusters. Then cluster pairs corresponding |
| // to edges in the degree-2 forest are off diagonal entries of this |
| // matrix. Scaling these off-diagonal entries by 1/2 forces this |
| // matrix to be positive definite. |
| void VisibilityBasedPreconditioner::ScaleOffDiagonalCells() { |
| for (const auto& block_pair : block_pairs_) { |
| const int block1 = block_pair.first; |
| const int block2 = block_pair.second; |
| if (!IsBlockPairOffDiagonal(block1, block2)) { |
| continue; |
| } |
| |
| int r, c, row_stride, col_stride; |
| CellInfo* cell_info = |
| m_->GetCell(block1, block2, &r, &c, &row_stride, &col_stride); |
| CHECK(cell_info != nullptr) |
| << "Cell missing for block pair (" << block1 << "," << block2 << ")" |
| << " cluster pair (" << cluster_membership_[block1] << " " |
| << cluster_membership_[block2] << ")"; |
| |
| // Ah the magic of tri-diagonal matrices and diagonal |
| // dominance. See Lemma 1 in "Visibility Based Preconditioning |
| // For Bundle Adjustment". |
| MatrixRef m(cell_info->values, row_stride, col_stride); |
| m.block(r, c, blocks_[block1].size, blocks_[block2].size) *= 0.5; |
| } |
| } |
| |
| // Compute the sparse Cholesky factorization of the preconditioner |
| // matrix. |
| LinearSolverTerminationType VisibilityBasedPreconditioner::Factorize() { |
| // Extract the TripletSparseMatrix that is used for actually storing |
| // S and convert it into a CompressedRowSparseMatrix. |
| const TripletSparseMatrix* tsm = |
| down_cast<BlockRandomAccessSparseMatrix*>(m_.get())->mutable_matrix(); |
| |
| std::unique_ptr<CompressedRowSparseMatrix> lhs; |
| const CompressedRowSparseMatrix::StorageType storage_type = |
| sparse_cholesky_->StorageType(); |
| if (storage_type == |
| CompressedRowSparseMatrix::StorageType::UPPER_TRIANGULAR) { |
| lhs = CompressedRowSparseMatrix::FromTripletSparseMatrix(*tsm); |
| lhs->set_storage_type( |
| CompressedRowSparseMatrix::StorageType::UPPER_TRIANGULAR); |
| } else { |
| lhs = CompressedRowSparseMatrix::FromTripletSparseMatrixTransposed(*tsm); |
| lhs->set_storage_type( |
| CompressedRowSparseMatrix::StorageType::LOWER_TRIANGULAR); |
| } |
| |
| std::string message; |
| return sparse_cholesky_->Factorize(lhs.get(), &message); |
| } |
| |
| void VisibilityBasedPreconditioner::RightMultiplyAndAccumulate( |
| const double* x, double* y) const { |
| CHECK(x != nullptr); |
| CHECK(y != nullptr); |
| CHECK(sparse_cholesky_ != nullptr); |
| std::string message; |
| sparse_cholesky_->Solve(x, y, &message); |
| } |
| |
| int VisibilityBasedPreconditioner::num_rows() const { return m_->num_rows(); } |
| |
| // Classify camera/f_block pairs as in and out of the preconditioner, |
| // based on whether the cluster pair that they belong to is in the |
| // preconditioner or not. |
| bool VisibilityBasedPreconditioner::IsBlockPairInPreconditioner( |
| const int block1, const int block2) const { |
| int cluster1 = cluster_membership_[block1]; |
| int cluster2 = cluster_membership_[block2]; |
| if (cluster1 > cluster2) { |
| std::swap(cluster1, cluster2); |
| } |
| return (cluster_pairs_.count(std::make_pair(cluster1, cluster2)) > 0); |
| } |
| |
| bool VisibilityBasedPreconditioner::IsBlockPairOffDiagonal( |
| const int block1, const int block2) const { |
| return (cluster_membership_[block1] != cluster_membership_[block2]); |
| } |
| |
| // Convert a graph into a list of edges that includes self edges for |
| // each vertex. |
| void VisibilityBasedPreconditioner::ForestToClusterPairs( |
| const WeightedGraph<int>& forest, |
| std::unordered_set<std::pair<int, int>, pair_hash>* cluster_pairs) const { |
| CHECK(cluster_pairs != nullptr); |
| cluster_pairs->clear(); |
| const std::unordered_set<int>& vertices = forest.vertices(); |
| CHECK_EQ(vertices.size(), num_clusters_); |
| |
| // Add all the cluster pairs corresponding to the edges in the |
| // forest. |
| for (const int cluster1 : vertices) { |
| cluster_pairs->insert(std::make_pair(cluster1, cluster1)); |
| const std::unordered_set<int>& neighbors = forest.Neighbors(cluster1); |
| for (const int cluster2 : neighbors) { |
| if (cluster1 < cluster2) { |
| cluster_pairs->insert(std::make_pair(cluster1, cluster2)); |
| } |
| } |
| } |
| } |
| |
| // The visibility set of a cluster is the union of the visibility sets |
| // of all its cameras. In other words, the set of points visible to |
| // any camera in the cluster. |
| void VisibilityBasedPreconditioner::ComputeClusterVisibility( |
| const std::vector<std::set<int>>& visibility, |
| std::vector<std::set<int>>* cluster_visibility) const { |
| CHECK(cluster_visibility != nullptr); |
| cluster_visibility->resize(0); |
| cluster_visibility->resize(num_clusters_); |
| for (int i = 0; i < num_blocks_; ++i) { |
| const int cluster_id = cluster_membership_[i]; |
| (*cluster_visibility)[cluster_id].insert(visibility[i].begin(), |
| visibility[i].end()); |
| } |
| } |
| |
| // Construct a graph whose vertices are the clusters, and the edge |
| // weights are the number of 3D points visible to cameras in both the |
| // vertices. |
| std::unique_ptr<WeightedGraph<int>> |
| VisibilityBasedPreconditioner::CreateClusterGraph( |
| const std::vector<std::set<int>>& cluster_visibility) const { |
| auto cluster_graph = std::make_unique<WeightedGraph<int>>(); |
| |
| for (int i = 0; i < num_clusters_; ++i) { |
| cluster_graph->AddVertex(i); |
| } |
| |
| for (int i = 0; i < num_clusters_; ++i) { |
| const std::set<int>& cluster_i = cluster_visibility[i]; |
| for (int j = i + 1; j < num_clusters_; ++j) { |
| std::vector<int> intersection; |
| const std::set<int>& cluster_j = cluster_visibility[j]; |
| std::set_intersection(cluster_i.begin(), |
| cluster_i.end(), |
| cluster_j.begin(), |
| cluster_j.end(), |
| std::back_inserter(intersection)); |
| |
| if (intersection.size() > 0) { |
| // Clusters interact strongly when they share a large number |
| // of 3D points. The degree-2 maximum spanning forest |
| // algorithm, iterates on the edges in decreasing order of |
| // their weight, which is the number of points shared by the |
| // two cameras that it connects. |
| cluster_graph->AddEdge(i, j, intersection.size()); |
| } |
| } |
| } |
| return cluster_graph; |
| } |
| |
| // Canonical views clustering returns a std::unordered_map from vertices to |
| // cluster ids. Convert this into a flat array for quick lookup. It is |
| // possible that some of the vertices may not be associated with any |
| // cluster. In that case, randomly assign them to one of the clusters. |
| // |
| // The cluster ids can be non-contiguous integers. So as we flatten |
| // the membership_map, we also map the cluster ids to a contiguous set |
| // of integers so that the cluster ids are in [0, num_clusters_). |
| void VisibilityBasedPreconditioner::FlattenMembershipMap( |
| const std::unordered_map<int, int>& membership_map, |
| std::vector<int>* membership_vector) const { |
| CHECK(membership_vector != nullptr); |
| membership_vector->resize(0); |
| membership_vector->resize(num_blocks_, -1); |
| |
| std::unordered_map<int, int> cluster_id_to_index; |
| // Iterate over the cluster membership map and update the |
| // cluster_membership_ vector assigning arbitrary cluster ids to |
| // the few cameras that have not been clustered. |
| for (const auto& m : membership_map) { |
| const int camera_id = m.first; |
| int cluster_id = m.second; |
| |
| // If the view was not clustered, randomly assign it to one of the |
| // clusters. This preserves the mathematical correctness of the |
| // preconditioner. If there are too many views which are not |
| // clustered, it may lead to some quality degradation though. |
| // |
| // TODO(sameeragarwal): Check if a large number of views have not |
| // been clustered and deal with it? |
| if (cluster_id == -1) { |
| cluster_id = camera_id % num_clusters_; |
| } |
| |
| const int index = FindWithDefault( |
| cluster_id_to_index, cluster_id, cluster_id_to_index.size()); |
| |
| if (index == cluster_id_to_index.size()) { |
| cluster_id_to_index[cluster_id] = index; |
| } |
| |
| CHECK_LT(index, num_clusters_); |
| membership_vector->at(camera_id) = index; |
| } |
| } |
| |
| } // namespace ceres::internal |