| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2012 Google Inc. All rights reserved. |
| // http://code.google.com/p/ceres-solver/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: thadh@gmail.com (Thad Hughes) |
| // mierle@gmail.com (Keir Mierle) |
| // sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/dynamic_autodiff_cost_function.h" |
| |
| #include <cstddef> |
| |
| #include "gtest/gtest.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| // Takes 2 parameter blocks: |
| // parameters[0] is size 10. |
| // parameters[1] is size 5. |
| // Emits 21 residuals: |
| // A: i - parameters[0][i], for i in [0,10) -- this is 10 residuals |
| // B: parameters[0][i] - i, for i in [0,10) -- this is another 10. |
| // C: sum(parameters[0][i]^2 - 8*parameters[0][i]) + sum(parameters[1][i]) |
| class MyCostFunctor { |
| public: |
| template <typename T> |
| bool operator()(T const* const* parameters, T* residuals) const { |
| const T* params0 = parameters[0]; |
| int r = 0; |
| for (int i = 0; i < 10; ++i) { |
| residuals[r++] = T(i) - params0[i]; |
| residuals[r++] = params0[i] - T(i); |
| } |
| |
| T c_residual(0.0); |
| for (int i = 0; i < 10; ++i) { |
| c_residual += pow(params0[i], 2) - T(8) * params0[i]; |
| } |
| |
| const T* params1 = parameters[1]; |
| for (int i = 0; i < 5; ++i) { |
| c_residual += params1[i]; |
| } |
| residuals[r++] = c_residual; |
| return true; |
| } |
| }; |
| |
| TEST(DynamicAutodiffCostFunctionTest, TestResiduals) { |
| vector<double> param_block_0(10, 0.0); |
| vector<double> param_block_1(5, 0.0); |
| DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function( |
| new MyCostFunctor()); |
| cost_function.AddParameterBlock(param_block_0.size()); |
| cost_function.AddParameterBlock(param_block_1.size()); |
| cost_function.SetNumResiduals(21); |
| |
| // Test residual computation. |
| vector<double> residuals(21, -100000); |
| vector<double*> parameter_blocks(2); |
| parameter_blocks[0] = ¶m_block_0[0]; |
| parameter_blocks[1] = ¶m_block_1[0]; |
| EXPECT_TRUE(cost_function.Evaluate(¶meter_blocks[0], |
| residuals.data(), |
| NULL)); |
| for (int r = 0; r < 10; ++r) { |
| EXPECT_EQ(1.0 * r, residuals.at(r * 2)); |
| EXPECT_EQ(-1.0 * r, residuals.at(r * 2 + 1)); |
| } |
| EXPECT_EQ(0, residuals.at(20)); |
| } |
| |
| TEST(DynamicAutodiffCostFunctionTest, TestJacobian) { |
| // Test the residual counting. |
| vector<double> param_block_0(10, 0.0); |
| for (int i = 0; i < 10; ++i) { |
| param_block_0[i] = 2 * i; |
| } |
| vector<double> param_block_1(5, 0.0); |
| DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function( |
| new MyCostFunctor()); |
| cost_function.AddParameterBlock(param_block_0.size()); |
| cost_function.AddParameterBlock(param_block_1.size()); |
| cost_function.SetNumResiduals(21); |
| |
| // Prepare the residuals. |
| vector<double> residuals(21, -100000); |
| |
| // Prepare the parameters. |
| vector<double*> parameter_blocks(2); |
| parameter_blocks[0] = ¶m_block_0[0]; |
| parameter_blocks[1] = ¶m_block_1[0]; |
| |
| // Prepare the jacobian. |
| vector<vector<double> > jacobian_vect(2); |
| jacobian_vect[0].resize(21 * 10, -100000); |
| jacobian_vect[1].resize(21 * 5, -100000); |
| vector<double*> jacobian; |
| jacobian.push_back(jacobian_vect[0].data()); |
| jacobian.push_back(jacobian_vect[1].data()); |
| |
| // Test jacobian computation. |
| EXPECT_TRUE(cost_function.Evaluate(parameter_blocks.data(), |
| residuals.data(), |
| jacobian.data())); |
| |
| for (int r = 0; r < 10; ++r) { |
| EXPECT_EQ(-1.0 * r, residuals.at(r * 2)); |
| EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1)); |
| } |
| EXPECT_EQ(420, residuals.at(20)); |
| for (int p = 0; p < 10; ++p) { |
| // Check "A" Jacobian. |
| EXPECT_EQ(-1.0, jacobian_vect[0][2*p * 10 + p]); |
| // Check "B" Jacobian. |
| EXPECT_EQ(+1.0, jacobian_vect[0][(2*p+1) * 10 + p]); |
| jacobian_vect[0][2*p * 10 + p] = 0.0; |
| jacobian_vect[0][(2*p+1) * 10 + p] = 0.0; |
| } |
| |
| // Check "C" Jacobian for first parameter block. |
| for (int p = 0; p < 10; ++p) { |
| EXPECT_EQ(4 * p - 8, jacobian_vect[0][20 * 10 + p]); |
| jacobian_vect[0][20 * 10 + p] = 0.0; |
| } |
| for (int i = 0; i < jacobian_vect[0].size(); ++i) { |
| EXPECT_EQ(0.0, jacobian_vect[0][i]); |
| } |
| |
| // Check "C" Jacobian for second parameter block. |
| for (int p = 0; p < 5; ++p) { |
| EXPECT_EQ(1.0, jacobian_vect[1][20 * 5 + p]); |
| jacobian_vect[1][20 * 5 + p] = 0.0; |
| } |
| for (int i = 0; i < jacobian_vect[1].size(); ++i) { |
| EXPECT_EQ(0.0, jacobian_vect[1][i]); |
| } |
| } |
| |
| TEST(DynamicAutodiffCostFunctionTest, JacobianWithFirstParameterBlockConstant) { |
| // Test the residual counting. |
| vector<double> param_block_0(10, 0.0); |
| for (int i = 0; i < 10; ++i) { |
| param_block_0[i] = 2 * i; |
| } |
| vector<double> param_block_1(5, 0.0); |
| DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function( |
| new MyCostFunctor()); |
| cost_function.AddParameterBlock(param_block_0.size()); |
| cost_function.AddParameterBlock(param_block_1.size()); |
| cost_function.SetNumResiduals(21); |
| |
| // Prepare the residuals. |
| vector<double> residuals(21, -100000); |
| |
| // Prepare the parameters. |
| vector<double*> parameter_blocks(2); |
| parameter_blocks[0] = ¶m_block_0[0]; |
| parameter_blocks[1] = ¶m_block_1[0]; |
| |
| // Prepare the jacobian. |
| vector<vector<double> > jacobian_vect(2); |
| jacobian_vect[0].resize(21 * 10, -100000); |
| jacobian_vect[1].resize(21 * 5, -100000); |
| vector<double*> jacobian; |
| jacobian.push_back(NULL); |
| jacobian.push_back(jacobian_vect[1].data()); |
| |
| // Test jacobian computation. |
| EXPECT_TRUE(cost_function.Evaluate(parameter_blocks.data(), |
| residuals.data(), |
| jacobian.data())); |
| |
| for (int r = 0; r < 10; ++r) { |
| EXPECT_EQ(-1.0 * r, residuals.at(r * 2)); |
| EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1)); |
| } |
| EXPECT_EQ(420, residuals.at(20)); |
| |
| // Check "C" Jacobian for second parameter block. |
| for (int p = 0; p < 5; ++p) { |
| EXPECT_EQ(1.0, jacobian_vect[1][20 * 5 + p]); |
| jacobian_vect[1][20 * 5 + p] = 0.0; |
| } |
| for (int i = 0; i < jacobian_vect[1].size(); ++i) { |
| EXPECT_EQ(0.0, jacobian_vect[1][i]); |
| } |
| } |
| |
| TEST(DynamicAutodiffCostFunctionTest, JacobianWithSecondParameterBlockConstant) { |
| // Test the residual counting. |
| vector<double> param_block_0(10, 0.0); |
| for (int i = 0; i < 10; ++i) { |
| param_block_0[i] = 2 * i; |
| } |
| vector<double> param_block_1(5, 0.0); |
| DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function( |
| new MyCostFunctor()); |
| cost_function.AddParameterBlock(param_block_0.size()); |
| cost_function.AddParameterBlock(param_block_1.size()); |
| cost_function.SetNumResiduals(21); |
| |
| // Prepare the residuals. |
| vector<double> residuals(21, -100000); |
| |
| // Prepare the parameters. |
| vector<double*> parameter_blocks(2); |
| parameter_blocks[0] = ¶m_block_0[0]; |
| parameter_blocks[1] = ¶m_block_1[0]; |
| |
| // Prepare the jacobian. |
| vector<vector<double> > jacobian_vect(2); |
| jacobian_vect[0].resize(21 * 10, -100000); |
| jacobian_vect[1].resize(21 * 5, -100000); |
| vector<double*> jacobian; |
| jacobian.push_back(jacobian_vect[0].data()); |
| jacobian.push_back(NULL); |
| |
| // Test jacobian computation. |
| EXPECT_TRUE(cost_function.Evaluate(parameter_blocks.data(), |
| residuals.data(), |
| jacobian.data())); |
| |
| for (int r = 0; r < 10; ++r) { |
| EXPECT_EQ(-1.0 * r, residuals.at(r * 2)); |
| EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1)); |
| } |
| EXPECT_EQ(420, residuals.at(20)); |
| for (int p = 0; p < 10; ++p) { |
| // Check "A" Jacobian. |
| EXPECT_EQ(-1.0, jacobian_vect[0][2*p * 10 + p]); |
| // Check "B" Jacobian. |
| EXPECT_EQ(+1.0, jacobian_vect[0][(2*p+1) * 10 + p]); |
| jacobian_vect[0][2*p * 10 + p] = 0.0; |
| jacobian_vect[0][(2*p+1) * 10 + p] = 0.0; |
| } |
| |
| // Check "C" Jacobian for first parameter block. |
| for (int p = 0; p < 10; ++p) { |
| EXPECT_EQ(4 * p - 8, jacobian_vect[0][20 * 10 + p]); |
| jacobian_vect[0][20 * 10 + p] = 0.0; |
| } |
| for (int i = 0; i < jacobian_vect[0].size(); ++i) { |
| EXPECT_EQ(0.0, jacobian_vect[0][i]); |
| } |
| } |
| |
| } // namespace internal |
| } // namespace ceres |