blob: b62b56a90cd6f5aaf1073b88b7c172605598ea29 [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: thadh@gmail.com (Thad Hughes)
// mierle@gmail.com (Keir Mierle)
// sameeragarwal@google.com (Sameer Agarwal)
#include "ceres/dynamic_autodiff_cost_function.h"
#include <cstddef>
#include "gtest/gtest.h"
namespace ceres {
namespace internal {
// Takes 2 parameter blocks:
// parameters[0] is size 10.
// parameters[1] is size 5.
// Emits 21 residuals:
// A: i - parameters[0][i], for i in [0,10) -- this is 10 residuals
// B: parameters[0][i] - i, for i in [0,10) -- this is another 10.
// C: sum(parameters[0][i]^2 - 8*parameters[0][i]) + sum(parameters[1][i])
class MyCostFunctor {
public:
template <typename T>
bool operator()(T const* const* parameters, T* residuals) const {
const T* params0 = parameters[0];
int r = 0;
for (int i = 0; i < 10; ++i) {
residuals[r++] = T(i) - params0[i];
residuals[r++] = params0[i] - T(i);
}
T c_residual(0.0);
for (int i = 0; i < 10; ++i) {
c_residual += pow(params0[i], 2) - T(8) * params0[i];
}
const T* params1 = parameters[1];
for (int i = 0; i < 5; ++i) {
c_residual += params1[i];
}
residuals[r++] = c_residual;
return true;
}
};
TEST(DynamicAutodiffCostFunctionTest, TestResiduals) {
vector<double> param_block_0(10, 0.0);
vector<double> param_block_1(5, 0.0);
DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function(
new MyCostFunctor());
cost_function.AddParameterBlock(param_block_0.size());
cost_function.AddParameterBlock(param_block_1.size());
cost_function.SetNumResiduals(21);
// Test residual computation.
vector<double> residuals(21, -100000);
vector<double*> parameter_blocks(2);
parameter_blocks[0] = &param_block_0[0];
parameter_blocks[1] = &param_block_1[0];
EXPECT_TRUE(cost_function.Evaluate(&parameter_blocks[0],
residuals.data(),
NULL));
for (int r = 0; r < 10; ++r) {
EXPECT_EQ(1.0 * r, residuals.at(r * 2));
EXPECT_EQ(-1.0 * r, residuals.at(r * 2 + 1));
}
EXPECT_EQ(0, residuals.at(20));
}
TEST(DynamicAutodiffCostFunctionTest, TestJacobian) {
// Test the residual counting.
vector<double> param_block_0(10, 0.0);
for (int i = 0; i < 10; ++i) {
param_block_0[i] = 2 * i;
}
vector<double> param_block_1(5, 0.0);
DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function(
new MyCostFunctor());
cost_function.AddParameterBlock(param_block_0.size());
cost_function.AddParameterBlock(param_block_1.size());
cost_function.SetNumResiduals(21);
// Prepare the residuals.
vector<double> residuals(21, -100000);
// Prepare the parameters.
vector<double*> parameter_blocks(2);
parameter_blocks[0] = &param_block_0[0];
parameter_blocks[1] = &param_block_1[0];
// Prepare the jacobian.
vector<vector<double> > jacobian_vect(2);
jacobian_vect[0].resize(21 * 10, -100000);
jacobian_vect[1].resize(21 * 5, -100000);
vector<double*> jacobian;
jacobian.push_back(jacobian_vect[0].data());
jacobian.push_back(jacobian_vect[1].data());
// Test jacobian computation.
EXPECT_TRUE(cost_function.Evaluate(parameter_blocks.data(),
residuals.data(),
jacobian.data()));
for (int r = 0; r < 10; ++r) {
EXPECT_EQ(-1.0 * r, residuals.at(r * 2));
EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1));
}
EXPECT_EQ(420, residuals.at(20));
for (int p = 0; p < 10; ++p) {
// Check "A" Jacobian.
EXPECT_EQ(-1.0, jacobian_vect[0][2*p * 10 + p]);
// Check "B" Jacobian.
EXPECT_EQ(+1.0, jacobian_vect[0][(2*p+1) * 10 + p]);
jacobian_vect[0][2*p * 10 + p] = 0.0;
jacobian_vect[0][(2*p+1) * 10 + p] = 0.0;
}
// Check "C" Jacobian for first parameter block.
for (int p = 0; p < 10; ++p) {
EXPECT_EQ(4 * p - 8, jacobian_vect[0][20 * 10 + p]);
jacobian_vect[0][20 * 10 + p] = 0.0;
}
for (int i = 0; i < jacobian_vect[0].size(); ++i) {
EXPECT_EQ(0.0, jacobian_vect[0][i]);
}
// Check "C" Jacobian for second parameter block.
for (int p = 0; p < 5; ++p) {
EXPECT_EQ(1.0, jacobian_vect[1][20 * 5 + p]);
jacobian_vect[1][20 * 5 + p] = 0.0;
}
for (int i = 0; i < jacobian_vect[1].size(); ++i) {
EXPECT_EQ(0.0, jacobian_vect[1][i]);
}
}
TEST(DynamicAutodiffCostFunctionTest, JacobianWithFirstParameterBlockConstant) {
// Test the residual counting.
vector<double> param_block_0(10, 0.0);
for (int i = 0; i < 10; ++i) {
param_block_0[i] = 2 * i;
}
vector<double> param_block_1(5, 0.0);
DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function(
new MyCostFunctor());
cost_function.AddParameterBlock(param_block_0.size());
cost_function.AddParameterBlock(param_block_1.size());
cost_function.SetNumResiduals(21);
// Prepare the residuals.
vector<double> residuals(21, -100000);
// Prepare the parameters.
vector<double*> parameter_blocks(2);
parameter_blocks[0] = &param_block_0[0];
parameter_blocks[1] = &param_block_1[0];
// Prepare the jacobian.
vector<vector<double> > jacobian_vect(2);
jacobian_vect[0].resize(21 * 10, -100000);
jacobian_vect[1].resize(21 * 5, -100000);
vector<double*> jacobian;
jacobian.push_back(NULL);
jacobian.push_back(jacobian_vect[1].data());
// Test jacobian computation.
EXPECT_TRUE(cost_function.Evaluate(parameter_blocks.data(),
residuals.data(),
jacobian.data()));
for (int r = 0; r < 10; ++r) {
EXPECT_EQ(-1.0 * r, residuals.at(r * 2));
EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1));
}
EXPECT_EQ(420, residuals.at(20));
// Check "C" Jacobian for second parameter block.
for (int p = 0; p < 5; ++p) {
EXPECT_EQ(1.0, jacobian_vect[1][20 * 5 + p]);
jacobian_vect[1][20 * 5 + p] = 0.0;
}
for (int i = 0; i < jacobian_vect[1].size(); ++i) {
EXPECT_EQ(0.0, jacobian_vect[1][i]);
}
}
TEST(DynamicAutodiffCostFunctionTest, JacobianWithSecondParameterBlockConstant) {
// Test the residual counting.
vector<double> param_block_0(10, 0.0);
for (int i = 0; i < 10; ++i) {
param_block_0[i] = 2 * i;
}
vector<double> param_block_1(5, 0.0);
DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function(
new MyCostFunctor());
cost_function.AddParameterBlock(param_block_0.size());
cost_function.AddParameterBlock(param_block_1.size());
cost_function.SetNumResiduals(21);
// Prepare the residuals.
vector<double> residuals(21, -100000);
// Prepare the parameters.
vector<double*> parameter_blocks(2);
parameter_blocks[0] = &param_block_0[0];
parameter_blocks[1] = &param_block_1[0];
// Prepare the jacobian.
vector<vector<double> > jacobian_vect(2);
jacobian_vect[0].resize(21 * 10, -100000);
jacobian_vect[1].resize(21 * 5, -100000);
vector<double*> jacobian;
jacobian.push_back(jacobian_vect[0].data());
jacobian.push_back(NULL);
// Test jacobian computation.
EXPECT_TRUE(cost_function.Evaluate(parameter_blocks.data(),
residuals.data(),
jacobian.data()));
for (int r = 0; r < 10; ++r) {
EXPECT_EQ(-1.0 * r, residuals.at(r * 2));
EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1));
}
EXPECT_EQ(420, residuals.at(20));
for (int p = 0; p < 10; ++p) {
// Check "A" Jacobian.
EXPECT_EQ(-1.0, jacobian_vect[0][2*p * 10 + p]);
// Check "B" Jacobian.
EXPECT_EQ(+1.0, jacobian_vect[0][(2*p+1) * 10 + p]);
jacobian_vect[0][2*p * 10 + p] = 0.0;
jacobian_vect[0][(2*p+1) * 10 + p] = 0.0;
}
// Check "C" Jacobian for first parameter block.
for (int p = 0; p < 10; ++p) {
EXPECT_EQ(4 * p - 8, jacobian_vect[0][20 * 10 + p]);
jacobian_vect[0][20 * 10 + p] = 0.0;
}
for (int i = 0; i < jacobian_vect[0].size(); ++i) {
EXPECT_EQ(0.0, jacobian_vect[0][i]);
}
}
} // namespace internal
} // namespace ceres