| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2012 Google Inc. All rights reserved. | 
 | // http://code.google.com/p/ceres-solver/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: thadh@gmail.com (Thad Hughes) | 
 | //         mierle@gmail.com (Keir Mierle) | 
 | //         sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/dynamic_autodiff_cost_function.h" | 
 |  | 
 | #include <cstddef> | 
 |  | 
 | #include "gtest/gtest.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | // Takes 2 parameter blocks: | 
 | //     parameters[0] is size 10. | 
 | //     parameters[1] is size 5. | 
 | // Emits 21 residuals: | 
 | //     A: i - parameters[0][i], for i in [0,10)  -- this is 10 residuals | 
 | //     B: parameters[0][i] - i, for i in [0,10)  -- this is another 10. | 
 | //     C: sum(parameters[0][i]^2 - 8*parameters[0][i]) + sum(parameters[1][i]) | 
 | class MyCostFunctor { | 
 |  public: | 
 |   template <typename T> | 
 |   bool operator()(T const* const* parameters, T* residuals) const { | 
 |     const T* params0 = parameters[0]; | 
 |     int r = 0; | 
 |     for (int i = 0; i < 10; ++i) { | 
 |       residuals[r++] = T(i) - params0[i]; | 
 |       residuals[r++] = params0[i] - T(i); | 
 |     } | 
 |  | 
 |     T c_residual(0.0); | 
 |     for (int i = 0; i < 10; ++i) { | 
 |       c_residual += pow(params0[i], 2) - T(8) * params0[i]; | 
 |     } | 
 |  | 
 |     const T* params1 = parameters[1]; | 
 |     for (int i = 0; i < 5; ++i) { | 
 |       c_residual += params1[i]; | 
 |     } | 
 |     residuals[r++] = c_residual; | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | TEST(DynamicAutodiffCostFunctionTest, TestResiduals) { | 
 |   vector<double> param_block_0(10, 0.0); | 
 |   vector<double> param_block_1(5, 0.0); | 
 |   DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function( | 
 |       new MyCostFunctor()); | 
 |   cost_function.AddParameterBlock(param_block_0.size()); | 
 |   cost_function.AddParameterBlock(param_block_1.size()); | 
 |   cost_function.SetNumResiduals(21); | 
 |  | 
 |   // Test residual computation. | 
 |   vector<double> residuals(21, -100000); | 
 |   vector<double*> parameter_blocks(2); | 
 |   parameter_blocks[0] = ¶m_block_0[0]; | 
 |   parameter_blocks[1] = ¶m_block_1[0]; | 
 |   EXPECT_TRUE(cost_function.Evaluate(¶meter_blocks[0], | 
 |                                      residuals.data(), | 
 |                                      NULL)); | 
 |   for (int r = 0; r < 10; ++r) { | 
 |     EXPECT_EQ(1.0 * r, residuals.at(r * 2)); | 
 |     EXPECT_EQ(-1.0 * r, residuals.at(r * 2 + 1)); | 
 |   } | 
 |   EXPECT_EQ(0, residuals.at(20)); | 
 | } | 
 |  | 
 | TEST(DynamicAutodiffCostFunctionTest, TestJacobian) { | 
 |   // Test the residual counting. | 
 |   vector<double> param_block_0(10, 0.0); | 
 |   for (int i = 0; i < 10; ++i) { | 
 |     param_block_0[i] = 2 * i; | 
 |   } | 
 |   vector<double> param_block_1(5, 0.0); | 
 |   DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function( | 
 |       new MyCostFunctor()); | 
 |   cost_function.AddParameterBlock(param_block_0.size()); | 
 |   cost_function.AddParameterBlock(param_block_1.size()); | 
 |   cost_function.SetNumResiduals(21); | 
 |  | 
 |   // Prepare the residuals. | 
 |   vector<double> residuals(21, -100000); | 
 |  | 
 |   // Prepare the parameters. | 
 |   vector<double*> parameter_blocks(2); | 
 |   parameter_blocks[0] = ¶m_block_0[0]; | 
 |   parameter_blocks[1] = ¶m_block_1[0]; | 
 |  | 
 |   // Prepare the jacobian. | 
 |   vector<vector<double> > jacobian_vect(2); | 
 |   jacobian_vect[0].resize(21 * 10, -100000); | 
 |   jacobian_vect[1].resize(21 * 5, -100000); | 
 |   vector<double*> jacobian; | 
 |   jacobian.push_back(jacobian_vect[0].data()); | 
 |   jacobian.push_back(jacobian_vect[1].data()); | 
 |  | 
 |   // Test jacobian computation. | 
 |   EXPECT_TRUE(cost_function.Evaluate(parameter_blocks.data(), | 
 |                                      residuals.data(), | 
 |                                      jacobian.data())); | 
 |  | 
 |   for (int r = 0; r < 10; ++r) { | 
 |     EXPECT_EQ(-1.0 * r, residuals.at(r * 2)); | 
 |     EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1)); | 
 |   } | 
 |   EXPECT_EQ(420, residuals.at(20)); | 
 |   for (int p = 0; p < 10; ++p) { | 
 |     // Check "A" Jacobian. | 
 |     EXPECT_EQ(-1.0, jacobian_vect[0][2*p * 10 + p]); | 
 |     // Check "B" Jacobian. | 
 |     EXPECT_EQ(+1.0, jacobian_vect[0][(2*p+1) * 10 + p]); | 
 |     jacobian_vect[0][2*p * 10 + p] = 0.0; | 
 |     jacobian_vect[0][(2*p+1) * 10 + p] = 0.0; | 
 |   } | 
 |  | 
 |   // Check "C" Jacobian for first parameter block. | 
 |   for (int p = 0; p < 10; ++p) { | 
 |     EXPECT_EQ(4 * p - 8, jacobian_vect[0][20 * 10 + p]); | 
 |     jacobian_vect[0][20 * 10 + p] = 0.0; | 
 |   } | 
 |   for (int i = 0; i < jacobian_vect[0].size(); ++i) { | 
 |     EXPECT_EQ(0.0, jacobian_vect[0][i]); | 
 |   } | 
 |  | 
 |   // Check "C" Jacobian for second parameter block. | 
 |   for (int p = 0; p < 5; ++p) { | 
 |     EXPECT_EQ(1.0, jacobian_vect[1][20 * 5 + p]); | 
 |     jacobian_vect[1][20 * 5 + p] = 0.0; | 
 |   } | 
 |   for (int i = 0; i < jacobian_vect[1].size(); ++i) { | 
 |     EXPECT_EQ(0.0, jacobian_vect[1][i]); | 
 |   } | 
 | } | 
 |  | 
 | TEST(DynamicAutodiffCostFunctionTest, JacobianWithFirstParameterBlockConstant) { | 
 |   // Test the residual counting. | 
 |   vector<double> param_block_0(10, 0.0); | 
 |   for (int i = 0; i < 10; ++i) { | 
 |     param_block_0[i] = 2 * i; | 
 |   } | 
 |   vector<double> param_block_1(5, 0.0); | 
 |   DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function( | 
 |       new MyCostFunctor()); | 
 |   cost_function.AddParameterBlock(param_block_0.size()); | 
 |   cost_function.AddParameterBlock(param_block_1.size()); | 
 |   cost_function.SetNumResiduals(21); | 
 |  | 
 |   // Prepare the residuals. | 
 |   vector<double> residuals(21, -100000); | 
 |  | 
 |   // Prepare the parameters. | 
 |   vector<double*> parameter_blocks(2); | 
 |   parameter_blocks[0] = ¶m_block_0[0]; | 
 |   parameter_blocks[1] = ¶m_block_1[0]; | 
 |  | 
 |   // Prepare the jacobian. | 
 |   vector<vector<double> > jacobian_vect(2); | 
 |   jacobian_vect[0].resize(21 * 10, -100000); | 
 |   jacobian_vect[1].resize(21 * 5, -100000); | 
 |   vector<double*> jacobian; | 
 |   jacobian.push_back(NULL); | 
 |   jacobian.push_back(jacobian_vect[1].data()); | 
 |  | 
 |   // Test jacobian computation. | 
 |   EXPECT_TRUE(cost_function.Evaluate(parameter_blocks.data(), | 
 |                                      residuals.data(), | 
 |                                      jacobian.data())); | 
 |  | 
 |   for (int r = 0; r < 10; ++r) { | 
 |     EXPECT_EQ(-1.0 * r, residuals.at(r * 2)); | 
 |     EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1)); | 
 |   } | 
 |   EXPECT_EQ(420, residuals.at(20)); | 
 |  | 
 |   // Check "C" Jacobian for second parameter block. | 
 |   for (int p = 0; p < 5; ++p) { | 
 |     EXPECT_EQ(1.0, jacobian_vect[1][20 * 5 + p]); | 
 |     jacobian_vect[1][20 * 5 + p] = 0.0; | 
 |   } | 
 |   for (int i = 0; i < jacobian_vect[1].size(); ++i) { | 
 |     EXPECT_EQ(0.0, jacobian_vect[1][i]); | 
 |   } | 
 | } | 
 |  | 
 | TEST(DynamicAutodiffCostFunctionTest, JacobianWithSecondParameterBlockConstant) { | 
 |   // Test the residual counting. | 
 |   vector<double> param_block_0(10, 0.0); | 
 |   for (int i = 0; i < 10; ++i) { | 
 |     param_block_0[i] = 2 * i; | 
 |   } | 
 |   vector<double> param_block_1(5, 0.0); | 
 |   DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function( | 
 |       new MyCostFunctor()); | 
 |   cost_function.AddParameterBlock(param_block_0.size()); | 
 |   cost_function.AddParameterBlock(param_block_1.size()); | 
 |   cost_function.SetNumResiduals(21); | 
 |  | 
 |   // Prepare the residuals. | 
 |   vector<double> residuals(21, -100000); | 
 |  | 
 |   // Prepare the parameters. | 
 |   vector<double*> parameter_blocks(2); | 
 |   parameter_blocks[0] = ¶m_block_0[0]; | 
 |   parameter_blocks[1] = ¶m_block_1[0]; | 
 |  | 
 |   // Prepare the jacobian. | 
 |   vector<vector<double> > jacobian_vect(2); | 
 |   jacobian_vect[0].resize(21 * 10, -100000); | 
 |   jacobian_vect[1].resize(21 * 5, -100000); | 
 |   vector<double*> jacobian; | 
 |   jacobian.push_back(jacobian_vect[0].data()); | 
 |   jacobian.push_back(NULL); | 
 |  | 
 |   // Test jacobian computation. | 
 |   EXPECT_TRUE(cost_function.Evaluate(parameter_blocks.data(), | 
 |                                      residuals.data(), | 
 |                                      jacobian.data())); | 
 |  | 
 |   for (int r = 0; r < 10; ++r) { | 
 |     EXPECT_EQ(-1.0 * r, residuals.at(r * 2)); | 
 |     EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1)); | 
 |   } | 
 |   EXPECT_EQ(420, residuals.at(20)); | 
 |   for (int p = 0; p < 10; ++p) { | 
 |     // Check "A" Jacobian. | 
 |     EXPECT_EQ(-1.0, jacobian_vect[0][2*p * 10 + p]); | 
 |     // Check "B" Jacobian. | 
 |     EXPECT_EQ(+1.0, jacobian_vect[0][(2*p+1) * 10 + p]); | 
 |     jacobian_vect[0][2*p * 10 + p] = 0.0; | 
 |     jacobian_vect[0][(2*p+1) * 10 + p] = 0.0; | 
 |   } | 
 |  | 
 |   // Check "C" Jacobian for first parameter block. | 
 |   for (int p = 0; p < 10; ++p) { | 
 |     EXPECT_EQ(4 * p - 8, jacobian_vect[0][20 * 10 + p]); | 
 |     jacobian_vect[0][20 * 10 + p] = 0.0; | 
 |   } | 
 |   for (int i = 0; i < jacobian_vect[0].size(); ++i) { | 
 |     EXPECT_EQ(0.0, jacobian_vect[0][i]); | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |