| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| // http://code.google.com/p/ceres-solver/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: keir@google.com (Keir Mierle) |
| |
| #ifndef CERES_INTERNAL_SOLVER_IMPL_H_ |
| #define CERES_INTERNAL_SOLVER_IMPL_H_ |
| |
| #include <set> |
| #include <string> |
| #include <vector> |
| #include "ceres/internal/port.h" |
| #include "ceres/ordered_groups.h" |
| #include "ceres/problem_impl.h" |
| #include "ceres/solver.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| class CoordinateDescentMinimizer; |
| class Evaluator; |
| class LinearSolver; |
| class Program; |
| class TripletSparseMatrix; |
| |
| class SolverImpl { |
| public: |
| // Mirrors the interface in solver.h, but exposes implementation |
| // details for testing internally. |
| static void Solve(const Solver::Options& options, |
| ProblemImpl* problem_impl, |
| Solver::Summary* summary); |
| |
| static void TrustRegionSolve(const Solver::Options& options, |
| ProblemImpl* problem_impl, |
| Solver::Summary* summary); |
| |
| // Run the TrustRegionMinimizer for the given evaluator and configuration. |
| static void TrustRegionMinimize( |
| const Solver::Options &options, |
| Program* program, |
| CoordinateDescentMinimizer* inner_iteration_minimizer, |
| Evaluator* evaluator, |
| LinearSolver* linear_solver, |
| double* parameters, |
| Solver::Summary* summary); |
| |
| #ifndef CERES_NO_LINE_SEARCH_MINIMIZER |
| static void LineSearchSolve(const Solver::Options& options, |
| ProblemImpl* problem_impl, |
| Solver::Summary* summary); |
| |
| // Run the LineSearchMinimizer for the given evaluator and configuration. |
| static void LineSearchMinimize(const Solver::Options &options, |
| Program* program, |
| Evaluator* evaluator, |
| double* parameters, |
| Solver::Summary* summary); |
| #endif // CERES_NO_LINE_SEARCH_MINIMIZER |
| |
| // Create the transformed Program, which has all the fixed blocks |
| // and residuals eliminated, and in the case of automatic schur |
| // ordering, has the E blocks first in the resulting program, with |
| // options.num_eliminate_blocks set appropriately. |
| // |
| // If fixed_cost is not NULL, the residual blocks that are removed |
| // are evaluated and the sum of their cost is returned in fixed_cost. |
| static Program* CreateReducedProgram(Solver::Options* options, |
| ProblemImpl* problem_impl, |
| double* fixed_cost, |
| string* error); |
| |
| // Create the appropriate linear solver, taking into account any |
| // config changes decided by CreateTransformedProgram(). The |
| // selected linear solver, which may be different from what the user |
| // selected; consider the case that the remaining elimininated |
| // blocks is zero after removing fixed blocks. |
| static LinearSolver* CreateLinearSolver(Solver::Options* options, |
| string* error); |
| |
| // Reorder the residuals for program, if necessary, so that the |
| // residuals involving e block (i.e., the first num_eliminate_block |
| // parameter blocks) occur together. This is a necessary condition |
| // for the Schur eliminator. |
| static bool LexicographicallyOrderResidualBlocks( |
| const int num_eliminate_blocks, |
| Program* program, |
| string* error); |
| |
| // Create the appropriate evaluator for the transformed program. |
| static Evaluator* CreateEvaluator( |
| const Solver::Options& options, |
| const ProblemImpl::ParameterMap& parameter_map, |
| Program* program, |
| string* error); |
| |
| // Remove the fixed or unused parameter blocks and residuals |
| // depending only on fixed parameters from the problem. Also updates |
| // num_eliminate_blocks, since removed parameters changes the point |
| // at which the eliminated blocks is valid. If fixed_cost is not |
| // NULL, the residual blocks that are removed are evaluated and the |
| // sum of their cost is returned in fixed_cost. |
| static bool RemoveFixedBlocksFromProgram(Program* program, |
| ParameterBlockOrdering* ordering, |
| double* fixed_cost, |
| string* error); |
| |
| static bool IsOrderingValid(const Solver::Options& options, |
| const ProblemImpl* problem_impl, |
| string* error); |
| |
| static bool IsParameterBlockSetIndependent( |
| const set<double*>& parameter_block_ptrs, |
| const vector<ResidualBlock*>& residual_blocks); |
| |
| static CoordinateDescentMinimizer* CreateInnerIterationMinimizer( |
| const Solver::Options& options, |
| const Program& program, |
| const ProblemImpl::ParameterMap& parameter_map, |
| Solver::Summary* summary); |
| |
| // If the linear solver is of Schur type, then replace it with the |
| // closest equivalent linear solver. This is done when the user |
| // requested a Schur type solver but the problem structure makes it |
| // impossible to use one. |
| // |
| // If the linear solver is not of Schur type, the function is a |
| // no-op. |
| static void AlternateLinearSolverForSchurTypeLinearSolver( |
| Solver::Options* options); |
| |
| // Create a TripletSparseMatrix which contains the zero-one |
| // structure corresponding to the block sparsity of the transpose of |
| // the Jacobian matrix. |
| // |
| // Caller owns the result. |
| static TripletSparseMatrix* CreateJacobianBlockSparsityTranspose( |
| const Program* program); |
| |
| // Reorder the parameter blocks in program using the ordering |
| static bool ApplyUserOrdering( |
| const ProblemImpl::ParameterMap& parameter_map, |
| const ParameterBlockOrdering* parameter_block_ordering, |
| Program* program, |
| string* error); |
| |
| // Sparse cholesky factorization routines when doing the sparse |
| // cholesky factorization of the Jacobian matrix, reorders its |
| // columns to reduce the fill-in. Compute this permutation and |
| // re-order the parameter blocks. |
| // |
| // If the parameter_block_ordering contains more than one |
| // elimination group and support for constrained fill-reducing |
| // ordering is available in the sparse linear algebra library |
| // (SuiteSparse version >= 4.2.0) then the fill reducing |
| // ordering will take it into account, otherwise it will be ignored. |
| static bool ReorderProgramForSparseNormalCholesky( |
| const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type, |
| const ParameterBlockOrdering* parameter_block_ordering, |
| Program* program, |
| string* error); |
| |
| // Schur type solvers require that all parameter blocks eliminated |
| // by the Schur eliminator occur before others and the residuals be |
| // sorted in lexicographic order of their parameter blocks. |
| // |
| // If the parameter_block_ordering only contains one elimination |
| // group then a maximal independent set is computed and used as the |
| // first elimination group, otherwise the user's ordering is used. |
| // |
| // If the linear solver type is SPARSE_SCHUR and support for |
| // constrained fill-reducing ordering is available in the sparse |
| // linear algebra library (SuiteSparse version >= 4.2.0) then |
| // columns of the schur complement matrix are ordered to reduce the |
| // fill-in the Cholesky factorization. |
| // |
| // Upon return, ordering contains the parameter block ordering that |
| // was used to order the program. |
| static bool ReorderProgramForSchurTypeLinearSolver( |
| const LinearSolverType linear_solver_type, |
| const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type, |
| const ProblemImpl::ParameterMap& parameter_map, |
| ParameterBlockOrdering* parameter_block_ordering, |
| Program* program, |
| string* error); |
| }; |
| |
| } // namespace internal |
| } // namespace ceres |
| |
| #endif // CERES_INTERNAL_SOLVER_IMPL_H_ |