|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2023 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  | // | 
|  | // Preconditioned Conjugate Gradients based solver for positive | 
|  | // semidefinite linear systems. | 
|  |  | 
|  | #ifndef CERES_INTERNAL_CONJUGATE_GRADIENTS_SOLVER_H_ | 
|  | #define CERES_INTERNAL_CONJUGATE_GRADIENTS_SOLVER_H_ | 
|  |  | 
|  | #include <cmath> | 
|  | #include <cstddef> | 
|  | #include <utility> | 
|  |  | 
|  | #include "absl/strings/str_format.h" | 
|  | #include "ceres/eigen_vector_ops.h" | 
|  | #include "ceres/internal/disable_warnings.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/internal/export.h" | 
|  | #include "ceres/linear_operator.h" | 
|  | #include "ceres/linear_solver.h" | 
|  | #include "ceres/types.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | // Interface for the linear operator used by ConjugateGradientsSolver. | 
|  | template <typename DenseVectorType> | 
|  | class ConjugateGradientsLinearOperator { | 
|  | public: | 
|  | virtual ~ConjugateGradientsLinearOperator() = default; | 
|  | virtual void RightMultiplyAndAccumulate(const DenseVectorType& x, | 
|  | DenseVectorType& y) = 0; | 
|  | }; | 
|  |  | 
|  | // Adapter class that makes LinearOperator appear like an instance of | 
|  | // ConjugateGradientsLinearOperator. | 
|  | class LinearOperatorAdapter : public ConjugateGradientsLinearOperator<Vector> { | 
|  | public: | 
|  | LinearOperatorAdapter(LinearOperator& linear_operator) | 
|  | : linear_operator_(linear_operator) {} | 
|  | ~LinearOperatorAdapter() override = default; | 
|  | void RightMultiplyAndAccumulate(const Vector& x, Vector& y) final { | 
|  | linear_operator_.RightMultiplyAndAccumulate(x, y); | 
|  | } | 
|  |  | 
|  | private: | 
|  | LinearOperator& linear_operator_; | 
|  | }; | 
|  |  | 
|  | // Options to control the ConjugateGradientsSolver. For detailed documentation | 
|  | // for each of these options see linear_solver.h | 
|  | struct ConjugateGradientsSolverOptions { | 
|  | int min_num_iterations = 1; | 
|  | int max_num_iterations = 1; | 
|  | int residual_reset_period = 10; | 
|  | double r_tolerance = 0.0; | 
|  | double q_tolerance = 0.0; | 
|  | ContextImpl* context = nullptr; | 
|  | int num_threads = 1; | 
|  | }; | 
|  |  | 
|  | // This function implements the now classical Conjugate Gradients algorithm of | 
|  | // Hestenes & Stiefel for solving positive semidefinite linear systems. | 
|  | // Optionally it can use a preconditioner also to reduce the condition number of | 
|  | // the linear system and improve the convergence rate. Modern references for | 
|  | // Conjugate Gradients are the books by Yousef Saad and Trefethen & Bau. This | 
|  | // implementation of CG has been augmented with additional termination tests | 
|  | // that are needed for forcing early termination when used as part of an inexact | 
|  | // Newton solver. | 
|  | // | 
|  | // This implementation is templated over DenseVectorType and then in turn on | 
|  | // ConjugateGradientsLinearOperator, which allows us to write an abstract | 
|  | // implementation of the Conjugate Gradients algorithm without worrying about | 
|  | // how these objects are implemented or where they are stored. In particular it | 
|  | // allows us to have a single implementation that works on CPU and GPU based | 
|  | // matrices and vectors. | 
|  | // | 
|  | // scratch must contain pointers to four DenseVector objects of the same size as | 
|  | // rhs and solution. By asking the user for scratch space, we guarantee that we | 
|  | // will not perform any allocations inside this function. | 
|  | template <typename DenseVectorType> | 
|  | LinearSolver::Summary ConjugateGradientsSolver( | 
|  | const ConjugateGradientsSolverOptions options, | 
|  | ConjugateGradientsLinearOperator<DenseVectorType>& lhs, | 
|  | const DenseVectorType& rhs, | 
|  | ConjugateGradientsLinearOperator<DenseVectorType>& preconditioner, | 
|  | DenseVectorType* scratch[4], | 
|  | DenseVectorType& solution) { | 
|  | auto IsZeroOrInfinity = [](double x) { | 
|  | return ((x == 0.0) || std::isinf(x)); | 
|  | }; | 
|  |  | 
|  | DenseVectorType& p = *scratch[0]; | 
|  | DenseVectorType& r = *scratch[1]; | 
|  | DenseVectorType& z = *scratch[2]; | 
|  | DenseVectorType& tmp = *scratch[3]; | 
|  |  | 
|  | LinearSolver::Summary summary; | 
|  | summary.termination_type = LinearSolverTerminationType::NO_CONVERGENCE; | 
|  | summary.message = "Maximum number of iterations reached."; | 
|  | summary.num_iterations = 0; | 
|  |  | 
|  | const double norm_rhs = Norm(rhs, options.context, options.num_threads); | 
|  | if (norm_rhs == 0.0) { | 
|  | SetZero(solution, options.context, options.num_threads); | 
|  | summary.termination_type = LinearSolverTerminationType::SUCCESS; | 
|  | summary.message = "Convergence. |b| = 0."; | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | const double tol_r = options.r_tolerance * norm_rhs; | 
|  |  | 
|  | SetZero(tmp, options.context, options.num_threads); | 
|  | lhs.RightMultiplyAndAccumulate(solution, tmp); | 
|  |  | 
|  | // r = rhs - tmp | 
|  | Axpby(1.0, rhs, -1.0, tmp, r, options.context, options.num_threads); | 
|  |  | 
|  | double norm_r = Norm(r, options.context, options.num_threads); | 
|  | if (options.min_num_iterations == 0 && norm_r <= tol_r) { | 
|  | summary.termination_type = LinearSolverTerminationType::SUCCESS; | 
|  | summary.message = | 
|  | absl::StrFormat("Convergence. |r| = %e <= %e.", norm_r, tol_r); | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | double rho = 1.0; | 
|  |  | 
|  | // Initial value of the quadratic model Q = x'Ax - 2 * b'x. | 
|  | // double Q0 = -1.0 * solution.dot(rhs + r); | 
|  | Axpby(1.0, rhs, 1.0, r, tmp, options.context, options.num_threads); | 
|  | double Q0 = -Dot(solution, tmp, options.context, options.num_threads); | 
|  |  | 
|  | for (summary.num_iterations = 1;; ++summary.num_iterations) { | 
|  | SetZero(z, options.context, options.num_threads); | 
|  | preconditioner.RightMultiplyAndAccumulate(r, z); | 
|  |  | 
|  | const double last_rho = rho; | 
|  | // rho = r.dot(z); | 
|  | rho = Dot(r, z, options.context, options.num_threads); | 
|  | if (IsZeroOrInfinity(rho)) { | 
|  | summary.termination_type = LinearSolverTerminationType::FAILURE; | 
|  | summary.message = | 
|  | absl::StrFormat("Numerical failure. rho = r'z = %e.", rho); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (summary.num_iterations == 1) { | 
|  | Copy(z, p, options.context, options.num_threads); | 
|  | } else { | 
|  | const double beta = rho / last_rho; | 
|  | if (IsZeroOrInfinity(beta)) { | 
|  | summary.termination_type = LinearSolverTerminationType::FAILURE; | 
|  | summary.message = absl::StrFormat( | 
|  | "Numerical failure. beta = rho_n / rho_{n-1} = %e, " | 
|  | "rho_n = %e, rho_{n-1} = %e", | 
|  | beta, | 
|  | rho, | 
|  | last_rho); | 
|  | break; | 
|  | } | 
|  | // p = z + beta * p; | 
|  | Axpby(1.0, z, beta, p, p, options.context, options.num_threads); | 
|  | } | 
|  |  | 
|  | DenseVectorType& q = z; | 
|  | SetZero(q, options.context, options.num_threads); | 
|  | lhs.RightMultiplyAndAccumulate(p, q); | 
|  | const double pq = Dot(p, q, options.context, options.num_threads); | 
|  | if ((pq <= 0) || std::isinf(pq)) { | 
|  | summary.termination_type = LinearSolverTerminationType::NO_CONVERGENCE; | 
|  | summary.message = absl::StrFormat( | 
|  | "Matrix is indefinite, no more progress can be made. " | 
|  | "p'q = %e. |p| = %e, |q| = %e", | 
|  | pq, | 
|  | Norm(p, options.context, options.num_threads), | 
|  | Norm(q, options.context, options.num_threads)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | const double alpha = rho / pq; | 
|  | if (std::isinf(alpha)) { | 
|  | summary.termination_type = LinearSolverTerminationType::FAILURE; | 
|  | summary.message = absl::StrFormat( | 
|  | "Numerical failure. alpha = rho / pq = %e, rho = %e, pq = %e.", | 
|  | alpha, | 
|  | rho, | 
|  | pq); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // solution = solution + alpha * p; | 
|  | Axpby(1.0, | 
|  | solution, | 
|  | alpha, | 
|  | p, | 
|  | solution, | 
|  | options.context, | 
|  | options.num_threads); | 
|  |  | 
|  | // Ideally we would just use the update r = r - alpha*q to keep | 
|  | // track of the residual vector. However this estimate tends to | 
|  | // drift over time due to round off errors. Thus every | 
|  | // residual_reset_period iterations, we calculate the residual as | 
|  | // r = b - Ax. We do not do this every iteration because this | 
|  | // requires an additional matrix vector multiply which would | 
|  | // double the complexity of the CG algorithm. | 
|  | if (summary.num_iterations % options.residual_reset_period == 0) { | 
|  | SetZero(tmp, options.context, options.num_threads); | 
|  | lhs.RightMultiplyAndAccumulate(solution, tmp); | 
|  | Axpby(1.0, rhs, -1.0, tmp, r, options.context, options.num_threads); | 
|  | // r = rhs - tmp; | 
|  | } else { | 
|  | Axpby(1.0, r, -alpha, q, r, options.context, options.num_threads); | 
|  | // r = r - alpha * q; | 
|  | } | 
|  |  | 
|  | // Quadratic model based termination. | 
|  | //   Q1 = x'Ax - 2 * b' x. | 
|  | // const double Q1 = -1.0 * solution.dot(rhs + r); | 
|  | Axpby(1.0, rhs, 1.0, r, tmp, options.context, options.num_threads); | 
|  | const double Q1 = -Dot(solution, tmp, options.context, options.num_threads); | 
|  |  | 
|  | // For PSD matrices A, let | 
|  | // | 
|  | //   Q(x) = x'Ax - 2b'x | 
|  | // | 
|  | // be the cost of the quadratic function defined by A and b. Then, | 
|  | // the solver terminates at iteration i if | 
|  | // | 
|  | //   i * (Q(x_i) - Q(x_i-1)) / Q(x_i) < q_tolerance. | 
|  | // | 
|  | // This termination criterion is more useful when using CG to | 
|  | // solve the Newton step. This particular convergence test comes | 
|  | // from Stephen Nash's work on truncated Newton | 
|  | // methods. References: | 
|  | // | 
|  | //   1. Stephen G. Nash & Ariela Sofer, Assessing A Search | 
|  | //   Direction Within A Truncated Newton Method, Operation | 
|  | //   Research Letters 9(1990) 219-221. | 
|  | // | 
|  | //   2. Stephen G. Nash, A Survey of Truncated Newton Methods, | 
|  | //   Journal of Computational and Applied Mathematics, | 
|  | //   124(1-2), 45-59, 2000. | 
|  | // | 
|  | const double zeta = summary.num_iterations * (Q1 - Q0) / Q1; | 
|  | if (zeta < options.q_tolerance && | 
|  | summary.num_iterations >= options.min_num_iterations) { | 
|  | summary.termination_type = LinearSolverTerminationType::SUCCESS; | 
|  | summary.message = | 
|  | absl::StrFormat("Iteration: %d Convergence: zeta = %e < %e. |r| = %e", | 
|  | summary.num_iterations, | 
|  | zeta, | 
|  | options.q_tolerance, | 
|  | Norm(r, options.context, options.num_threads)); | 
|  | break; | 
|  | } | 
|  | Q0 = Q1; | 
|  |  | 
|  | // Residual based termination. | 
|  | norm_r = Norm(r, options.context, options.num_threads); | 
|  | if (norm_r <= tol_r && | 
|  | summary.num_iterations >= options.min_num_iterations) { | 
|  | summary.termination_type = LinearSolverTerminationType::SUCCESS; | 
|  | summary.message = | 
|  | absl::StrFormat("Iteration: %d Convergence. |r| = %e <= %e.", | 
|  | summary.num_iterations, | 
|  | norm_r, | 
|  | tol_r); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (summary.num_iterations >= options.max_num_iterations) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | }  // namespace ceres::internal | 
|  |  | 
|  | #include "ceres/internal/reenable_warnings.h" | 
|  |  | 
|  | #endif  // CERES_INTERNAL_CONJUGATE_GRADIENTS_SOLVER_H_ |