| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2023 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: strandmark@google.com (Petter Strandmark) | 
 |  | 
 | #include "ceres/gradient_problem.h" | 
 |  | 
 | #include <memory> | 
 |  | 
 | #include "ceres/manifold.h" | 
 | #include "gtest/gtest.h" | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | class QuadraticTestFunction : public ceres::FirstOrderFunction { | 
 |  public: | 
 |   explicit QuadraticTestFunction(bool* flag_to_set_on_destruction = nullptr) | 
 |       : flag_to_set_on_destruction_(flag_to_set_on_destruction) {} | 
 |  | 
 |   ~QuadraticTestFunction() override { | 
 |     if (flag_to_set_on_destruction_) { | 
 |       *flag_to_set_on_destruction_ = true; | 
 |     } | 
 |   } | 
 |  | 
 |   bool Evaluate(const double* parameters, | 
 |                 double* cost, | 
 |                 double* gradient) const final { | 
 |     const double x = parameters[0]; | 
 |     cost[0] = x * x; | 
 |     if (gradient != nullptr) { | 
 |       gradient[0] = 2.0 * x; | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   int NumParameters() const final { return 1; } | 
 |  | 
 |  private: | 
 |   bool* flag_to_set_on_destruction_; | 
 | }; | 
 |  | 
 | TEST(GradientProblem, TakesOwnershipOfFirstOrderFunction) { | 
 |   bool is_destructed = false; | 
 |   { | 
 |     ceres::GradientProblem problem( | 
 |         std::make_unique<QuadraticTestFunction>(&is_destructed)); | 
 |   } | 
 |   EXPECT_TRUE(is_destructed); | 
 | } | 
 |  | 
 | TEST(GradientProblem, EvaluationWithManifoldAndNoGradient) { | 
 |   ceres::GradientProblem problem(std::make_unique<QuadraticTestFunction>(), | 
 |                                  std::make_unique<EuclideanManifold<1>>()); | 
 |   double x = 7.0; | 
 |   double cost = 0; | 
 |   problem.Evaluate(&x, &cost, nullptr); | 
 |   EXPECT_EQ(x * x, cost); | 
 | } | 
 |  | 
 | TEST(GradientProblem, EvaluationWithoutManifoldAndWithGradient) { | 
 |   ceres::GradientProblem problem(std::make_unique<QuadraticTestFunction>()); | 
 |   double x = 7.0; | 
 |   double cost = 0; | 
 |   double gradient = 0; | 
 |   problem.Evaluate(&x, &cost, &gradient); | 
 |   EXPECT_EQ(2.0 * x, gradient); | 
 | } | 
 |  | 
 | TEST(GradientProblem, EvaluationWithManifoldAndWithGradient) { | 
 |   ceres::GradientProblem problem(std::make_unique<QuadraticTestFunction>(), | 
 |                                  std::make_unique<EuclideanManifold<1>>()); | 
 |   double x = 7.0; | 
 |   double cost = 0; | 
 |   double gradient = 0; | 
 |   problem.Evaluate(&x, &cost, &gradient); | 
 |   EXPECT_EQ(2.0 * x, gradient); | 
 | } | 
 |  | 
 | }  // namespace ceres::internal |