| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2012 Google Inc. All rights reserved. | 
 | // http://code.google.com/p/ceres-solver/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: moll.markus@arcor.de (Markus Moll) | 
 |  | 
 | #include "ceres/polynomial_solver.h" | 
 |  | 
 | #include <cmath> | 
 | #include <cstddef> | 
 | #include "Eigen/Dense" | 
 | #include "ceres/internal/port.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 | namespace { | 
 |  | 
 | // Balancing function as described by B. N. Parlett and C. Reinsch, | 
 | // "Balancing a Matrix for Calculation of Eigenvalues and Eigenvectors". | 
 | // In: Numerische Mathematik, Volume 13, Number 4 (1969), 293-304, | 
 | // Springer Berlin / Heidelberg. DOI: 10.1007/BF02165404 | 
 | void BalanceCompanionMatrix(Matrix* companion_matrix_ptr) { | 
 |   CHECK_NOTNULL(companion_matrix_ptr); | 
 |   Matrix& companion_matrix = *companion_matrix_ptr; | 
 |   Matrix companion_matrix_offdiagonal = companion_matrix; | 
 |   companion_matrix_offdiagonal.diagonal().setZero(); | 
 |  | 
 |   const int degree = companion_matrix.rows(); | 
 |  | 
 |   // gamma <= 1 controls how much a change in the scaling has to | 
 |   // lower the 1-norm of the companion matrix to be accepted. | 
 |   // | 
 |   // gamma = 1 seems to lead to cycles (numerical issues?), so | 
 |   // we set it slightly lower. | 
 |   const double gamma = 0.9; | 
 |  | 
 |   // Greedily scale row/column pairs until there is no change. | 
 |   bool scaling_has_changed; | 
 |   do { | 
 |     scaling_has_changed = false; | 
 |  | 
 |     for (int i = 0; i < degree; ++i) { | 
 |       const double row_norm = companion_matrix_offdiagonal.row(i).lpNorm<1>(); | 
 |       const double col_norm = companion_matrix_offdiagonal.col(i).lpNorm<1>(); | 
 |  | 
 |       // Decompose row_norm/col_norm into mantissa * 2^exponent, | 
 |       // where 0.5 <= mantissa < 1. Discard mantissa (return value | 
 |       // of frexp), as only the exponent is needed. | 
 |       int exponent = 0; | 
 |       std::frexp(row_norm / col_norm, &exponent); | 
 |       exponent /= 2; | 
 |  | 
 |       if (exponent != 0) { | 
 |         const double scaled_col_norm = std::ldexp(col_norm, exponent); | 
 |         const double scaled_row_norm = std::ldexp(row_norm, -exponent); | 
 |         if (scaled_col_norm + scaled_row_norm < gamma * (col_norm + row_norm)) { | 
 |           // Accept the new scaling. (Multiplication by powers of 2 should not | 
 |           // introduce rounding errors (ignoring non-normalized numbers and | 
 |           // over- or underflow)) | 
 |           scaling_has_changed = true; | 
 |           companion_matrix_offdiagonal.row(i) *= std::ldexp(1.0, -exponent); | 
 |           companion_matrix_offdiagonal.col(i) *= std::ldexp(1.0, exponent); | 
 |         } | 
 |       } | 
 |     } | 
 |   } while (scaling_has_changed); | 
 |  | 
 |   companion_matrix_offdiagonal.diagonal() = companion_matrix.diagonal(); | 
 |   companion_matrix = companion_matrix_offdiagonal; | 
 |   VLOG(3) << "Balanced companion matrix is\n" << companion_matrix; | 
 | } | 
 |  | 
 | void BuildCompanionMatrix(const Vector& polynomial, | 
 |                           Matrix* companion_matrix_ptr) { | 
 |   CHECK_NOTNULL(companion_matrix_ptr); | 
 |   Matrix& companion_matrix = *companion_matrix_ptr; | 
 |  | 
 |   const int degree = polynomial.size() - 1; | 
 |  | 
 |   companion_matrix.resize(degree, degree); | 
 |   companion_matrix.setZero(); | 
 |   companion_matrix.diagonal(-1).setOnes(); | 
 |   companion_matrix.col(degree - 1) = -polynomial.reverse().head(degree); | 
 | } | 
 |  | 
 | // Remove leading terms with zero coefficients. | 
 | Vector RemoveLeadingZeros(const Vector& polynomial_in) { | 
 |   int i = 0; | 
 |   while (i < (polynomial_in.size() - 1) && polynomial_in(i) == 0.0) { | 
 |     ++i; | 
 |   } | 
 |   return polynomial_in.tail(polynomial_in.size() - i); | 
 | } | 
 | }  // namespace | 
 |  | 
 | bool FindPolynomialRoots(const Vector& polynomial_in, | 
 |                          Vector* real, | 
 |                          Vector* imaginary) { | 
 |   if (polynomial_in.size() == 0) { | 
 |     LOG(ERROR) << "Invalid polynomial of size 0 passed to FindPolynomialRoots"; | 
 |     return false; | 
 |   } | 
 |  | 
 |   Vector polynomial = RemoveLeadingZeros(polynomial_in); | 
 |   const int degree = polynomial.size() - 1; | 
 |  | 
 |   // Is the polynomial constant? | 
 |   if (degree == 0) { | 
 |     LOG(WARNING) << "Trying to extract roots from a constant " | 
 |                  << "polynomial in FindPolynomialRoots"; | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Divide by leading term | 
 |   const double leading_term = polynomial(0); | 
 |   polynomial /= leading_term; | 
 |  | 
 |   // Separately handle linear polynomials. | 
 |   if (degree == 1) { | 
 |     if (real != NULL) { | 
 |       real->resize(1); | 
 |       (*real)(0) = -polynomial(1); | 
 |     } | 
 |     if (imaginary != NULL) { | 
 |       imaginary->resize(1); | 
 |       imaginary->setZero(); | 
 |     } | 
 |   } | 
 |  | 
 |   // The degree is now known to be at least 2. | 
 |   // Build and balance the companion matrix to the polynomial. | 
 |   Matrix companion_matrix(degree, degree); | 
 |   BuildCompanionMatrix(polynomial, &companion_matrix); | 
 |   BalanceCompanionMatrix(&companion_matrix); | 
 |  | 
 |   // Find its (complex) eigenvalues. | 
 |   Eigen::EigenSolver<Matrix> solver(companion_matrix, | 
 |                                     Eigen::EigenvaluesOnly); | 
 |   if (solver.info() != Eigen::Success) { | 
 |     LOG(ERROR) << "Failed to extract eigenvalues from companion matrix."; | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Output roots | 
 |   if (real != NULL) { | 
 |     *real = solver.eigenvalues().real(); | 
 |   } else { | 
 |     LOG(WARNING) << "NULL pointer passed as real argument to " | 
 |                  << "FindPolynomialRoots. Real parts of the roots will not " | 
 |                  << "be returned."; | 
 |   } | 
 |   if (imaginary != NULL) { | 
 |     *imaginary = solver.eigenvalues().imag(); | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |