|  | // Copyright 2018 The Abseil Authors. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //      https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  | // | 
|  | // ----------------------------------------------------------------------------- | 
|  | // File: fixed_array.h | 
|  | // ----------------------------------------------------------------------------- | 
|  | // | 
|  | // A `FixedArray<T>` represents a non-resizable array of `T` where the length of | 
|  | // the array can be determined at run-time. It is a good replacement for | 
|  | // non-standard and deprecated uses of `alloca()` and variable length arrays | 
|  | // within the GCC extension. (See | 
|  | // https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html). | 
|  | // | 
|  | // `FixedArray` allocates small arrays inline, keeping performance fast by | 
|  | // avoiding heap operations. It also helps reduce the chances of | 
|  | // accidentally overflowing your stack if large input is passed to | 
|  | // your function. | 
|  |  | 
|  | #ifndef CERES_PUBLIC_INTERNAL_FIXED_ARRAY_H_ | 
|  | #define CERES_PUBLIC_INTERNAL_FIXED_ARRAY_H_ | 
|  |  | 
|  | #include <Eigen/Core>  // For Eigen::aligned_allocator | 
|  | #include <algorithm> | 
|  | #include <array> | 
|  | #include <cstddef> | 
|  | #include <memory> | 
|  | #include <tuple> | 
|  | #include <type_traits> | 
|  |  | 
|  | #include "ceres/internal/memory.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | constexpr static auto kFixedArrayUseDefault = static_cast<size_t>(-1); | 
|  |  | 
|  | // The default fixed array allocator. | 
|  | // | 
|  | // As one can not easily detect if a struct contains or inherits from a fixed | 
|  | // size Eigen type, to be safe the Eigen::aligned_allocator is used by default. | 
|  | // But trivial types can never contain Eigen types, so std::allocator is used to | 
|  | // safe some heap memory. | 
|  | template <typename T> | 
|  | using FixedArrayDefaultAllocator = | 
|  | typename std::conditional<std::is_trivial<T>::value, | 
|  | std::allocator<T>, | 
|  | Eigen::aligned_allocator<T>>::type; | 
|  |  | 
|  | // ----------------------------------------------------------------------------- | 
|  | // FixedArray | 
|  | // ----------------------------------------------------------------------------- | 
|  | // | 
|  | // A `FixedArray` provides a run-time fixed-size array, allocating a small array | 
|  | // inline for efficiency. | 
|  | // | 
|  | // Most users should not specify an `inline_elements` argument and let | 
|  | // `FixedArray` automatically determine the number of elements | 
|  | // to store inline based on `sizeof(T)`. If `inline_elements` is specified, the | 
|  | // `FixedArray` implementation will use inline storage for arrays with a | 
|  | // length <= `inline_elements`. | 
|  | // | 
|  | // Note that a `FixedArray` constructed with a `size_type` argument will | 
|  | // default-initialize its values by leaving trivially constructible types | 
|  | // uninitialized (e.g. int, int[4], double), and others default-constructed. | 
|  | // This matches the behavior of c-style arrays and `std::array`, but not | 
|  | // `std::vector`. | 
|  | // | 
|  | // Note that `FixedArray` does not provide a public allocator; if it requires a | 
|  | // heap allocation, it will do so with global `::operator new[]()` and | 
|  | // `::operator delete[]()`, even if T provides class-scope overrides for these | 
|  | // operators. | 
|  | template <typename T, | 
|  | size_t N = kFixedArrayUseDefault, | 
|  | typename A = FixedArrayDefaultAllocator<T>> | 
|  | class FixedArray { | 
|  | static_assert(!std::is_array<T>::value || std::extent<T>::value > 0, | 
|  | "Arrays with unknown bounds cannot be used with FixedArray."); | 
|  |  | 
|  | static constexpr size_t kInlineBytesDefault = 256; | 
|  |  | 
|  | using AllocatorTraits = std::allocator_traits<A>; | 
|  | // std::iterator_traits isn't guaranteed to be SFINAE-friendly until C++17, | 
|  | // but this seems to be mostly pedantic. | 
|  | template <typename Iterator> | 
|  | using EnableIfForwardIterator = typename std::enable_if<std::is_convertible< | 
|  | typename std::iterator_traits<Iterator>::iterator_category, | 
|  | std::forward_iterator_tag>::value>::type; | 
|  | static constexpr bool DefaultConstructorIsNonTrivial() { | 
|  | return !std::is_trivially_default_constructible<StorageElement>::value; | 
|  | } | 
|  |  | 
|  | public: | 
|  | using allocator_type = typename AllocatorTraits::allocator_type; | 
|  | using value_type = typename AllocatorTraits::value_type; | 
|  | using pointer = typename AllocatorTraits::pointer; | 
|  | using const_pointer = typename AllocatorTraits::const_pointer; | 
|  | using reference = value_type&; | 
|  | using const_reference = const value_type&; | 
|  | using size_type = typename AllocatorTraits::size_type; | 
|  | using difference_type = typename AllocatorTraits::difference_type; | 
|  | using iterator = pointer; | 
|  | using const_iterator = const_pointer; | 
|  | using reverse_iterator = std::reverse_iterator<iterator>; | 
|  | using const_reverse_iterator = std::reverse_iterator<const_iterator>; | 
|  |  | 
|  | static constexpr size_type inline_elements = | 
|  | (N == kFixedArrayUseDefault ? kInlineBytesDefault / sizeof(value_type) | 
|  | : static_cast<size_type>(N)); | 
|  |  | 
|  | FixedArray(const FixedArray& other, | 
|  | const allocator_type& a = allocator_type()) | 
|  | : FixedArray(other.begin(), other.end(), a) {} | 
|  |  | 
|  | FixedArray(FixedArray&& other, const allocator_type& a = allocator_type()) | 
|  | : FixedArray(std::make_move_iterator(other.begin()), | 
|  | std::make_move_iterator(other.end()), | 
|  | a) {} | 
|  |  | 
|  | // Creates an array object that can store `n` elements. | 
|  | // Note that trivially constructible elements will be uninitialized. | 
|  | explicit FixedArray(size_type n, const allocator_type& a = allocator_type()) | 
|  | : storage_(n, a) { | 
|  | if (DefaultConstructorIsNonTrivial()) { | 
|  | ConstructRange(storage_.alloc(), storage_.begin(), storage_.end()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Creates an array initialized with `n` copies of `val`. | 
|  | FixedArray(size_type n, | 
|  | const value_type& val, | 
|  | const allocator_type& a = allocator_type()) | 
|  | : storage_(n, a) { | 
|  | ConstructRange(storage_.alloc(), storage_.begin(), storage_.end(), val); | 
|  | } | 
|  |  | 
|  | // Creates an array initialized with the size and contents of `init_list`. | 
|  | FixedArray(std::initializer_list<value_type> init_list, | 
|  | const allocator_type& a = allocator_type()) | 
|  | : FixedArray(init_list.begin(), init_list.end(), a) {} | 
|  |  | 
|  | // Creates an array initialized with the elements from the input | 
|  | // range. The array's size will always be `std::distance(first, last)`. | 
|  | // REQUIRES: Iterator must be a forward_iterator or better. | 
|  | template <typename Iterator, EnableIfForwardIterator<Iterator>* = nullptr> | 
|  | FixedArray(Iterator first, | 
|  | Iterator last, | 
|  | const allocator_type& a = allocator_type()) | 
|  | : storage_(std::distance(first, last), a) { | 
|  | CopyRange(storage_.alloc(), storage_.begin(), first, last); | 
|  | } | 
|  |  | 
|  | ~FixedArray() noexcept { | 
|  | for (auto* cur = storage_.begin(); cur != storage_.end(); ++cur) { | 
|  | AllocatorTraits::destroy(storage_.alloc(), cur); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Assignments are deleted because they break the invariant that the size of a | 
|  | // `FixedArray` never changes. | 
|  | void operator=(FixedArray&&) = delete; | 
|  | void operator=(const FixedArray&) = delete; | 
|  |  | 
|  | // FixedArray::size() | 
|  | // | 
|  | // Returns the length of the fixed array. | 
|  | size_type size() const { return storage_.size(); } | 
|  |  | 
|  | // FixedArray::max_size() | 
|  | // | 
|  | // Returns the largest possible value of `std::distance(begin(), end())` for a | 
|  | // `FixedArray<T>`. This is equivalent to the most possible addressable bytes | 
|  | // over the number of bytes taken by T. | 
|  | constexpr size_type max_size() const { | 
|  | return (std::numeric_limits<difference_type>::max)() / sizeof(value_type); | 
|  | } | 
|  |  | 
|  | // FixedArray::empty() | 
|  | // | 
|  | // Returns whether or not the fixed array is empty. | 
|  | bool empty() const { return size() == 0; } | 
|  |  | 
|  | // FixedArray::memsize() | 
|  | // | 
|  | // Returns the memory size of the fixed array in bytes. | 
|  | size_t memsize() const { return size() * sizeof(value_type); } | 
|  |  | 
|  | // FixedArray::data() | 
|  | // | 
|  | // Returns a const T* pointer to elements of the `FixedArray`. This pointer | 
|  | // can be used to access (but not modify) the contained elements. | 
|  | const_pointer data() const { return AsValueType(storage_.begin()); } | 
|  |  | 
|  | // Overload of FixedArray::data() to return a T* pointer to elements of the | 
|  | // fixed array. This pointer can be used to access and modify the contained | 
|  | // elements. | 
|  | pointer data() { return AsValueType(storage_.begin()); } | 
|  |  | 
|  | // FixedArray::operator[] | 
|  | // | 
|  | // Returns a reference the ith element of the fixed array. | 
|  | // REQUIRES: 0 <= i < size() | 
|  | reference operator[](size_type i) { | 
|  | DCHECK_LT(i, size()); | 
|  | return data()[i]; | 
|  | } | 
|  |  | 
|  | // Overload of FixedArray::operator()[] to return a const reference to the | 
|  | // ith element of the fixed array. | 
|  | // REQUIRES: 0 <= i < size() | 
|  | const_reference operator[](size_type i) const { | 
|  | DCHECK_LT(i, size()); | 
|  | return data()[i]; | 
|  | } | 
|  |  | 
|  | // FixedArray::front() | 
|  | // | 
|  | // Returns a reference to the first element of the fixed array. | 
|  | reference front() { return *begin(); } | 
|  |  | 
|  | // Overload of FixedArray::front() to return a reference to the first element | 
|  | // of a fixed array of const values. | 
|  | const_reference front() const { return *begin(); } | 
|  |  | 
|  | // FixedArray::back() | 
|  | // | 
|  | // Returns a reference to the last element of the fixed array. | 
|  | reference back() { return *(end() - 1); } | 
|  |  | 
|  | // Overload of FixedArray::back() to return a reference to the last element | 
|  | // of a fixed array of const values. | 
|  | const_reference back() const { return *(end() - 1); } | 
|  |  | 
|  | // FixedArray::begin() | 
|  | // | 
|  | // Returns an iterator to the beginning of the fixed array. | 
|  | iterator begin() { return data(); } | 
|  |  | 
|  | // Overload of FixedArray::begin() to return a const iterator to the | 
|  | // beginning of the fixed array. | 
|  | const_iterator begin() const { return data(); } | 
|  |  | 
|  | // FixedArray::cbegin() | 
|  | // | 
|  | // Returns a const iterator to the beginning of the fixed array. | 
|  | const_iterator cbegin() const { return begin(); } | 
|  |  | 
|  | // FixedArray::end() | 
|  | // | 
|  | // Returns an iterator to the end of the fixed array. | 
|  | iterator end() { return data() + size(); } | 
|  |  | 
|  | // Overload of FixedArray::end() to return a const iterator to the end of the | 
|  | // fixed array. | 
|  | const_iterator end() const { return data() + size(); } | 
|  |  | 
|  | // FixedArray::cend() | 
|  | // | 
|  | // Returns a const iterator to the end of the fixed array. | 
|  | const_iterator cend() const { return end(); } | 
|  |  | 
|  | // FixedArray::rbegin() | 
|  | // | 
|  | // Returns a reverse iterator from the end of the fixed array. | 
|  | reverse_iterator rbegin() { return reverse_iterator(end()); } | 
|  |  | 
|  | // Overload of FixedArray::rbegin() to return a const reverse iterator from | 
|  | // the end of the fixed array. | 
|  | const_reverse_iterator rbegin() const { | 
|  | return const_reverse_iterator(end()); | 
|  | } | 
|  |  | 
|  | // FixedArray::crbegin() | 
|  | // | 
|  | // Returns a const reverse iterator from the end of the fixed array. | 
|  | const_reverse_iterator crbegin() const { return rbegin(); } | 
|  |  | 
|  | // FixedArray::rend() | 
|  | // | 
|  | // Returns a reverse iterator from the beginning of the fixed array. | 
|  | reverse_iterator rend() { return reverse_iterator(begin()); } | 
|  |  | 
|  | // Overload of FixedArray::rend() for returning a const reverse iterator | 
|  | // from the beginning of the fixed array. | 
|  | const_reverse_iterator rend() const { | 
|  | return const_reverse_iterator(begin()); | 
|  | } | 
|  |  | 
|  | // FixedArray::crend() | 
|  | // | 
|  | // Returns a reverse iterator from the beginning of the fixed array. | 
|  | const_reverse_iterator crend() const { return rend(); } | 
|  |  | 
|  | // FixedArray::fill() | 
|  | // | 
|  | // Assigns the given `value` to all elements in the fixed array. | 
|  | void fill(const value_type& val) { std::fill(begin(), end(), val); } | 
|  |  | 
|  | // Relational operators. Equality operators are elementwise using | 
|  | // `operator==`, while order operators order FixedArrays lexicographically. | 
|  | friend bool operator==(const FixedArray& lhs, const FixedArray& rhs) { | 
|  | return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); | 
|  | } | 
|  |  | 
|  | friend bool operator!=(const FixedArray& lhs, const FixedArray& rhs) { | 
|  | return !(lhs == rhs); | 
|  | } | 
|  |  | 
|  | friend bool operator<(const FixedArray& lhs, const FixedArray& rhs) { | 
|  | return std::lexicographical_compare( | 
|  | lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); | 
|  | } | 
|  |  | 
|  | friend bool operator>(const FixedArray& lhs, const FixedArray& rhs) { | 
|  | return rhs < lhs; | 
|  | } | 
|  |  | 
|  | friend bool operator<=(const FixedArray& lhs, const FixedArray& rhs) { | 
|  | return !(rhs < lhs); | 
|  | } | 
|  |  | 
|  | friend bool operator>=(const FixedArray& lhs, const FixedArray& rhs) { | 
|  | return !(lhs < rhs); | 
|  | } | 
|  |  | 
|  | private: | 
|  | // StorageElement | 
|  | // | 
|  | // For FixedArrays with a C-style-array value_type, StorageElement is a POD | 
|  | // wrapper struct called StorageElementWrapper that holds the value_type | 
|  | // instance inside. This is needed for construction and destruction of the | 
|  | // entire array regardless of how many dimensions it has. For all other cases, | 
|  | // StorageElement is just an alias of value_type. | 
|  | // | 
|  | // Maintainer's Note: The simpler solution would be to simply wrap value_type | 
|  | // in a struct whether it's an array or not. That causes some paranoid | 
|  | // diagnostics to misfire, believing that 'data()' returns a pointer to a | 
|  | // single element, rather than the packed array that it really is. | 
|  | // e.g.: | 
|  | // | 
|  | //     FixedArray<char> buf(1); | 
|  | //     sprintf(buf.data(), "foo"); | 
|  | // | 
|  | //     error: call to int __builtin___sprintf_chk(etc...) | 
|  | //     will always overflow destination buffer [-Werror] | 
|  | // | 
|  | template <typename OuterT, | 
|  | typename InnerT = typename std::remove_extent<OuterT>::type, | 
|  | size_t InnerN = std::extent<OuterT>::value> | 
|  | struct StorageElementWrapper { | 
|  | InnerT array[InnerN]; | 
|  | }; | 
|  |  | 
|  | using StorageElement = | 
|  | typename std::conditional<std::is_array<value_type>::value, | 
|  | StorageElementWrapper<value_type>, | 
|  | value_type>::type; | 
|  |  | 
|  | static pointer AsValueType(pointer ptr) { return ptr; } | 
|  | static pointer AsValueType(StorageElementWrapper<value_type>* ptr) { | 
|  | return std::addressof(ptr->array); | 
|  | } | 
|  |  | 
|  | static_assert(sizeof(StorageElement) == sizeof(value_type), ""); | 
|  | static_assert(alignof(StorageElement) == alignof(value_type), ""); | 
|  |  | 
|  | class NonEmptyInlinedStorage { | 
|  | public: | 
|  | StorageElement* data() { return reinterpret_cast<StorageElement*>(buff_); } | 
|  | void AnnotateConstruct(size_type) {} | 
|  | void AnnotateDestruct(size_type) {} | 
|  |  | 
|  | // #ifdef ADDRESS_SANITIZER | 
|  | //     void* RedzoneBegin() { return &redzone_begin_; } | 
|  | //     void* RedzoneEnd() { return &redzone_end_ + 1; } | 
|  | // #endif  // ADDRESS_SANITIZER | 
|  |  | 
|  | private: | 
|  | // ADDRESS_SANITIZER_REDZONE(redzone_begin_); | 
|  | alignas(StorageElement) char buff_[sizeof(StorageElement[inline_elements])]; | 
|  | // ADDRESS_SANITIZER_REDZONE(redzone_end_); | 
|  | }; | 
|  |  | 
|  | class EmptyInlinedStorage { | 
|  | public: | 
|  | StorageElement* data() { return nullptr; } | 
|  | void AnnotateConstruct(size_type) {} | 
|  | void AnnotateDestruct(size_type) {} | 
|  | }; | 
|  |  | 
|  | using InlinedStorage = | 
|  | typename std::conditional<inline_elements == 0, | 
|  | EmptyInlinedStorage, | 
|  | NonEmptyInlinedStorage>::type; | 
|  |  | 
|  | // Storage | 
|  | // | 
|  | // An instance of Storage manages the inline and out-of-line memory for | 
|  | // instances of FixedArray. This guarantees that even when construction of | 
|  | // individual elements fails in the FixedArray constructor body, the | 
|  | // destructor for Storage will still be called and out-of-line memory will be | 
|  | // properly deallocated. | 
|  | // | 
|  | class Storage : public InlinedStorage { | 
|  | public: | 
|  | Storage(size_type n, const allocator_type& a) | 
|  | : size_alloc_(n, a), data_(InitializeData()) {} | 
|  |  | 
|  | ~Storage() noexcept { | 
|  | if (UsingInlinedStorage(size())) { | 
|  | InlinedStorage::AnnotateDestruct(size()); | 
|  | } else { | 
|  | AllocatorTraits::deallocate(alloc(), AsValueType(begin()), size()); | 
|  | } | 
|  | } | 
|  |  | 
|  | size_type size() const { return std::get<0>(size_alloc_); } | 
|  | StorageElement* begin() const { return data_; } | 
|  | StorageElement* end() const { return begin() + size(); } | 
|  | allocator_type& alloc() { return std::get<1>(size_alloc_); } | 
|  |  | 
|  | private: | 
|  | static bool UsingInlinedStorage(size_type n) { | 
|  | return n <= inline_elements; | 
|  | } | 
|  |  | 
|  | StorageElement* InitializeData() { | 
|  | if (UsingInlinedStorage(size())) { | 
|  | InlinedStorage::AnnotateConstruct(size()); | 
|  | return InlinedStorage::data(); | 
|  | } else { | 
|  | return reinterpret_cast<StorageElement*>( | 
|  | AllocatorTraits::allocate(alloc(), size())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Using std::tuple and not absl::CompressedTuple, as it has a lot of | 
|  | // dependencies to other absl headers. | 
|  | std::tuple<size_type, allocator_type> size_alloc_; | 
|  | StorageElement* data_; | 
|  | }; | 
|  |  | 
|  | Storage storage_; | 
|  | }; | 
|  |  | 
|  | template <typename T, size_t N, typename A> | 
|  | constexpr size_t FixedArray<T, N, A>::kInlineBytesDefault; | 
|  |  | 
|  | template <typename T, size_t N, typename A> | 
|  | constexpr typename FixedArray<T, N, A>::size_type | 
|  | FixedArray<T, N, A>::inline_elements; | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres | 
|  |  | 
|  | #endif  // CERES_PUBLIC_INTERNAL_FIXED_ARRAY_H_ |