| .. default-domain:: cpp |
| |
| .. cpp:namespace:: ceres |
| |
| .. _`chapter-modeling`: |
| |
| ============ |
| Modeling API |
| ============ |
| |
| Recall that Ceres solves robustified non-linear least squares problems |
| of the form |
| |
| .. math:: \frac{1}{2}\sum_{i=1} \rho_i\left(\left\|f_i\left(x_{i_1}, ... ,x_{i_k}\right)\right\|^2\right). |
| :label: ceresproblem3 |
| |
| The expression |
| :math:`\rho_i\left(\left\|f_i\left(x_{i_1},...,x_{i_k}\right)\right\|^2\right)` |
| is known as a ``ResidualBlock``, where :math:`f_i(\cdot)` is a |
| :class:`CostFunction` that depends on the parameter blocks |
| :math:`\left[x_{i_1},... , x_{i_k}\right]`. In most optimization |
| problems small groups of scalars occur together. For example the three |
| components of a translation vector and the four components of the |
| quaternion that define the pose of a camera. We refer to such a group |
| of small scalars as a ``ParameterBlock``. Of course a |
| ``ParameterBlock`` can just be a single parameter. :math:`\rho_i` is a |
| :class:`LossFunction`. A :class:`LossFunction` is a scalar function |
| that is used to reduce the influence of outliers on the solution of |
| non-linear least squares problems. |
| |
| In this chapter we will describe the various classes that are part of |
| Ceres Solver's modeling API, and how they can be used to construct |
| optimization. |
| |
| Once a problem has been constructed, various methods for solving them |
| will be discussed in :ref:`chapter-solving`. It is by design that the |
| modeling and the solving APIs are orthogonal to each other. This |
| enables easy switching/tweaking of various solver parameters without |
| having to touch the problem once it has been successfuly modeling. |
| |
| :class:`CostFunction` |
| --------------------- |
| |
| .. class:: CostFunction |
| |
| .. code-block:: c++ |
| |
| class CostFunction { |
| public: |
| virtual bool Evaluate(double const* const* parameters, |
| double* residuals, |
| double** jacobians) = 0; |
| const vector<int16>& parameter_block_sizes(); |
| int num_residuals() const; |
| |
| protected: |
| vector<int16>* mutable_parameter_block_sizes(); |
| void set_num_residuals(int num_residuals); |
| }; |
| |
| Given parameter blocks :math:`\left[x_{i_1}, ... , x_{i_k}\right]`, |
| a :class:`CostFunction` is responsible for computing a vector of |
| residuals and if asked a vector of Jacobian matrices, i.e., given |
| :math:`\left[x_{i_1}, ... , x_{i_k}\right]`, compute the vector |
| :math:`f_i\left(x_{i_1},...,x_{i_k}\right)` and the matrices |
| |
| .. math:: J_{ij} = \frac{\partial}{\partial x_{i_j}}f_i\left(x_{i_1},...,x_{i_k}\right),\quad \forall j \in \{i_1,..., i_k\} |
| |
| The signature of the class:`CostFunction` (number and sizes of |
| input parameter blocks and number of outputs) is stored in |
| :member:`CostFunction::parameter_block_sizes_` and |
| :member:`CostFunction::num_residuals_` respectively. User code |
| inheriting from this class is expected to set these two members |
| with the corresponding accessors. This information will be verified |
| by the :class:`Problem` when added with |
| :func:`Problem::AddResidualBlock`. |
| |
| .. function:: bool CostFunction::Evaluate(double const* const* parameters, double* residuals, double** jacobians) |
| |
| This is the key methods. It implements the residual and Jacobian |
| computation. |
| |
| ``parameters`` is an array of pointers to arrays containing the |
| various parameter blocks. parameters has the same number of |
| elements as :member:`CostFunction::parameter_block_sizes_`. |
| Parameter blocks are in the same order as |
| :member:`CostFunction::parameter_block_sizes_`. |
| |
| ``residuals`` is an array of size ``num_residuals_``. |
| |
| |
| ``jacobians`` is an array of size |
| :member:`CostFunction::parameter_block_sizes_` containing pointers |
| to storage for Jacobian matrices corresponding to each parameter |
| block. The Jacobian matrices are in the same order as |
| :member:`CostFunction::parameter_block_sizes_`. ``jacobians[i]`` is |
| an array that contains :member:`CostFunction::num_residuals_` x |
| :member:`CostFunction::parameter_block_sizes_` ``[i]`` |
| elements. Each Jacobian matrix is stored in row-major order, i.e., |
| ``jacobians[i][r * parameter_block_size_[i] + c]`` = |
| :math:`\frac{\partial residual[r]}{\partial parameters[i][c]}` |
| |
| |
| If ``jacobians`` is ``NULL``, then no derivatives are returned; |
| this is the case when computing cost only. If ``jacobians[i]`` is |
| ``NULL``, then the Jacobian matrix corresponding to the |
| :math:`i^{\textrm{th}}` parameter block must not be returned, this |
| is the case when the a parameter block is marked constant. |
| |
| |
| :class:`SizedCostFunction` |
| -------------------------- |
| |
| .. class:: SizedCostFunction |
| |
| If the size of the parameter blocks and the size of the residual |
| vector is known at compile time (this is the common case), Ceres |
| provides :class:`SizedCostFunction`, where these values can be |
| specified as template parameters. In this case the user only needs |
| to implement the :func:`CostFunction::Evaluate`. |
| |
| .. code-block:: c++ |
| |
| template<int kNumResiduals, |
| int N0 = 0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0, |
| int N5 = 0, int N6 = 0, int N7 = 0, int N8 = 0, int N9 = 0> |
| class SizedCostFunction : public CostFunction { |
| public: |
| virtual bool Evaluate(double const* const* parameters, |
| double* residuals, |
| double** jacobians) const = 0; |
| }; |
| |
| |
| :class:`AutoDiffCostFunction` |
| ----------------------------- |
| |
| .. class:: AutoDiffCostFunction |
| |
| But even defining the :class:`SizedCostFunction` can be a tedious |
| affair if complicated derivative computations are involved. To this |
| end Ceres provides automatic differentiation. |
| |
| To get an auto differentiated cost function, you must define a |
| class with a templated ``operator()`` (a functor) that computes the |
| cost function in terms of the template parameter ``T``. The |
| autodiff framework substitutes appropriate ``Jet`` objects for |
| ``T`` in order to compute the derivative when necessary, but this |
| is hidden, and you should write the function as if ``T`` were a |
| scalar type (e.g. a double-precision floating point number). |
| |
| The function must write the computed value in the last argument |
| (the only non-``const`` one) and return true to indicate success. |
| |
| For example, consider a scalar error :math:`e = k - x^\top y`, |
| where both :math:`x` and :math:`y` are two-dimensional vector |
| parameters and :math:`k` is a constant. The form of this error, |
| which is the difference between a constant and an expression, is a |
| common pattern in least squares problems. For example, the value |
| :math:`x^\top y` might be the model expectation for a series of |
| measurements, where there is an instance of the cost function for |
| each measurement :math:`k`. |
| |
| The actual cost added to the total problem is :math:`e^2`, or |
| :math:`(k - x^\top y)^2`; however, the squaring is implicitly done |
| by the optimization framework. |
| |
| To write an auto-differentiable cost function for the above model, |
| first define the object |
| |
| .. code-block:: c++ |
| |
| class MyScalarCostFunctor { |
| MyScalarCostFunctor(double k): k_(k) {} |
| |
| template <typename T> |
| bool operator()(const T* const x , const T* const y, T* e) const { |
| e[0] = T(k_) - x[0] * y[0] - x[1] * y[1]; |
| return true; |
| } |
| |
| private: |
| double k_; |
| }; |
| |
| |
| Note that in the declaration of ``operator()`` the input parameters |
| ``x`` and ``y`` come first, and are passed as const pointers to arrays |
| of ``T``. If there were three input parameters, then the third input |
| parameter would come after ``y``. The output is always the last |
| parameter, and is also a pointer to an array. In the example above, |
| ``e`` is a scalar, so only ``e[0]`` is set. |
| |
| Then given this class definition, the auto differentiated cost |
| function for it can be constructed as follows. |
| |
| .. code-block:: c++ |
| |
| CostFunction* cost_function |
| = new AutoDiffCostFunction<MyScalarCostFunctor, 1, 2, 2>( |
| new MyScalarCostFunctor(1.0)); ^ ^ ^ |
| | | | |
| Dimension of residual ------+ | | |
| Dimension of x ----------------+ | |
| Dimension of y -------------------+ |
| |
| |
| In this example, there is usually an instance for each measurement |
| of ``k``. |
| |
| In the instantiation above, the template parameters following |
| ``MyScalarCostFunction``, ``<1, 2, 2>`` describe the functor as |
| computing a 1-dimensional output from two arguments, both |
| 2-dimensional. |
| |
| The framework can currently accommodate cost functions of up to 6 |
| independent variables, and there is no limit on the dimensionality of |
| each of them. |
| |
| **WARNING 1** Since the functor will get instantiated with |
| different types for ``T``, you must convert from other numeric |
| types to ``T`` before mixing computations with other variables |
| oftype ``T``. In the example above, this is seen where instead of |
| using ``k_`` directly, ``k_`` is wrapped with ``T(k_)``. |
| |
| **WARNING 2** A common beginner's error when first using |
| :class:`AutoDiffCostFunction` is to get the sizing wrong. In particular, |
| there is a tendency to set the template parameters to (dimension of |
| residual, number of parameters) instead of passing a dimension |
| parameter for *every parameter block*. In the example above, that |
| would be ``<MyScalarCostFunction, 1, 2>``, which is missing the 2 |
| as the last template argument. |
| |
| |
| :class:`NumericDiffCostFunction` |
| -------------------------------- |
| |
| .. class:: NumericDiffCostFunction |
| |
| .. code-block:: c++ |
| |
| template <typename CostFunctionNoJacobian, |
| NumericDiffMethod method = CENTRAL, int M = 0, |
| int N0 = 0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0, |
| int N5 = 0, int N6 = 0, int N7 = 0, int N8 = 0, int N9 = 0> |
| class NumericDiffCostFunction |
| : public SizedCostFunction<M, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9> { |
| }; |
| |
| |
| Create a :class:`CostFunction` as needed by the least squares |
| framework with jacobians computed via numeric (a.k.a. finite) |
| differentiation. For more details see |
| http://en.wikipedia.org/wiki/Numerical_differentiation. |
| |
| To get an numerically differentiated :class:`CostFunction`, you |
| must define a class with a ``operator()`` (a functor) that computes |
| the residuals. The functor must write the computed value in the |
| last argument (the only non-``const`` one) and return ``true`` to |
| indicate success. e.g., an object of the form |
| |
| .. code-block:: c++ |
| |
| struct ScalarFunctor { |
| public: |
| bool operator()(const double* const x1, |
| const double* const x2, |
| double* residuals) const; |
| } |
| |
| For example, consider a scalar error :math:`e = k - x'y`, where |
| both :math:`x` and :math:`y` are two-dimensional column vector |
| parameters, the prime sign indicates transposition, and :math:`k` |
| is a constant. The form of this error, which is the difference |
| between a constant and an expression, is a common pattern in least |
| squares problems. For example, the value :math:`x'y` might be the |
| model expectation for a series of measurements, where there is an |
| instance of the cost function for each measurement :math:`k`. |
| |
| To write an numerically-differentiable class:`CostFunction` for the |
| above model, first define the object |
| |
| .. code-block:: c++ |
| |
| class MyScalarCostFunctor { |
| MyScalarCostFunctor(double k): k_(k) {} |
| |
| bool operator()(const double* const x, |
| const double* const y, |
| double* residuals) const { |
| residuals[0] = k_ - x[0] * y[0] + x[1] * y[1]; |
| return true; |
| } |
| |
| private: |
| double k_; |
| }; |
| |
| Note that in the declaration of ``operator()`` the input parameters |
| ``x`` and ``y`` come first, and are passed as const pointers to |
| arrays of ``double`` s. If there were three input parameters, then |
| the third input parameter would come after ``y``. The output is |
| always the last parameter, and is also a pointer to an array. In |
| the example above, the residual is a scalar, so only |
| ``residuals[0]`` is set. |
| |
| Then given this class definition, the numerically differentiated |
| :class:`CostFunction` with central differences used for computing |
| the derivative can be constructed as follows. |
| |
| .. code-block:: c++ |
| |
| CostFunction* cost_function |
| = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, 1, 2, 2>( |
| new MyScalarCostFunctor(1.0)); ^ ^ ^ |
| | | | | |
| Finite Differencing Scheme -+ | | | |
| Dimension of residual ----------+ | | |
| Dimension of x --------------------+ | |
| Dimension of y -----------------------+ |
| |
| In this example, there is usually an instance for each measumerent of `k`. |
| |
| In the instantiation above, the template parameters following |
| ``MyScalarCostFunctor``, ``1, 2, 2``, describe the functor as |
| computing a 1-dimensional output from two arguments, both |
| 2-dimensional. |
| |
| The framework can currently accommodate cost functions of up to 10 |
| independent variables, and there is no limit on the dimensionality |
| of each of them. |
| |
| The ``CENTRAL`` difference method is considerably more accurate at |
| the cost of twice as many function evaluations than forward |
| difference. Consider using central differences begin with, and only |
| after that works, trying forward difference to improve performance. |
| |
| **WARNING** A common beginner's error when first using |
| NumericDiffCostFunction is to get the sizing wrong. In particular, |
| there is a tendency to set the template parameters to (dimension of |
| residual, number of parameters) instead of passing a dimension |
| parameter for *every parameter*. In the example above, that would |
| be ``<MyScalarCostFunctor, 1, 2>``, which is missing the last ``2`` |
| argument. Please be careful when setting the size parameters. |
| |
| |
| **Alternate Interface** |
| |
| For a variety of reason, including compatibility with legacy code, |
| :class:`NumericDiffCostFunction` can also take |
| :class:`CostFunction` objects as input. The following describes |
| how. |
| |
| To get a numerically differentiated cost function, define a |
| subclass of :class:`CostFunction` such that the |
| :func:`CostFunction::Evaluate` function ignores the ``jacobians`` |
| parameter. The numeric differentiation wrapper will fill in the |
| jacobian parameter if nececssary by repeatedly calling the |
| :func:`CostFunction::Evaluate` with small changes to the |
| appropriate parameters, and computing the slope. For performance, |
| the numeric differentiation wrapper class is templated on the |
| concrete cost function, even though it could be implemented only in |
| terms of the :class:`CostFunction` interface. |
| |
| The numerically differentiated version of a cost function for a |
| cost function can be constructed as follows: |
| |
| .. code-block:: c++ |
| |
| CostFunction* cost_function |
| = new NumericDiffCostFunction<MyCostFunction, CENTRAL, 1, 4, 8>( |
| new MyCostFunction(...), TAKE_OWNERSHIP); |
| |
| where ``MyCostFunction`` has 1 residual and 2 parameter blocks with |
| sizes 4 and 8 respectively. Look at the tests for a more detailed |
| example. |
| |
| |
| :class:`NormalPrior` |
| -------------------- |
| |
| .. class:: NormalPrior |
| |
| .. code-block:: c++ |
| |
| class NormalPrior: public CostFunction { |
| public: |
| // Check that the number of rows in the vector b are the same as the |
| // number of columns in the matrix A, crash otherwise. |
| NormalPrior(const Matrix& A, const Vector& b); |
| |
| virtual bool Evaluate(double const* const* parameters, |
| double* residuals, |
| double** jacobians) const; |
| }; |
| |
| Implements a cost function of the form |
| |
| .. math:: cost(x) = ||A(x - b)||^2 |
| |
| where, the matrix A and the vector b are fixed and x is the |
| variable. In case the user is interested in implementing a cost |
| function of the form |
| |
| .. math:: cost(x) = (x - \mu)^T S^{-1} (x - \mu) |
| |
| where, :math:`\mu` is a vector and :math:`S` is a covariance matrix, |
| then, :math:`A = S^{-1/2}`, i.e the matrix :math:`A` is the square |
| root of the inverse of the covariance, also known as the stiffness |
| matrix. There are however no restrictions on the shape of |
| :math:`A`. It is free to be rectangular, which would be the case if |
| the covariance matrix :math:`S` is rank deficient. |
| |
| |
| :class:`ConditionedCostFunction` |
| -------------------------------- |
| |
| .. class:: ConditionedCostFunction |
| |
| This class allows you to apply different conditioning to the residual |
| values of a wrapped cost function. An example where this is useful is |
| where you have an existing cost function that produces N values, but you |
| want the total cost to be something other than just the sum of these |
| squared values - maybe you want to apply a different scaling to some |
| values, to change their contribution to the cost. |
| |
| Usage: |
| |
| .. code-block:: c++ |
| |
| // my_cost_function produces N residuals |
| CostFunction* my_cost_function = ... |
| CHECK_EQ(N, my_cost_function->num_residuals()); |
| vector<CostFunction*> conditioners; |
| |
| // Make N 1x1 cost functions (1 parameter, 1 residual) |
| CostFunction* f_1 = ... |
| conditioners.push_back(f_1); |
| |
| CostFunction* f_N = ... |
| conditioners.push_back(f_N); |
| ConditionedCostFunction* ccf = |
| new ConditionedCostFunction(my_cost_function, conditioners); |
| |
| |
| Now ``ccf`` 's ``residual[i]`` (i=0..N-1) will be passed though the |
| :math:`i^{\text{th}}` conditioner. |
| |
| .. code-block:: c++ |
| |
| ccf_residual[i] = f_i(my_cost_function_residual[i]) |
| |
| and the Jacobian will be affected appropriately. |
| |
| :class:`CostFunctionToFunctor` |
| ------------------------------ |
| |
| .. class:: CostFunctionToFunctor |
| |
| :class:`CostFunctionToFunctor` is an adapter class that allows users to use |
| :class:`CostFunction` objects in templated functors which are to be used for |
| automatic differentiation. This allows the user to seamlessly mix |
| analytic, numeric and automatic differentiation. |
| |
| For example, let us assume that |
| |
| .. code-block:: c++ |
| |
| class IntrinsicProjection : public SizedCostFunction<2, 5, 3> { |
| public: |
| IntrinsicProjection(const double* observations); |
| virtual bool Evaluate(double const* const* parameters, |
| double* residuals, |
| double** jacobians) const; |
| }; |
| |
| is a :class:`CostFunction` that implements the projection of a |
| point in its local coordinate system onto its image plane and |
| subtracts it from the observed point projection. It can compute its |
| residual and either via analytic or numerical differentiation can |
| compute its jacobians. |
| |
| Now we would like to compose the action of this |
| :class:`CostFunction` with the action of camera extrinsics, i.e., |
| rotation and translation. Say we have a templated function |
| |
| .. code-block:: c++ |
| |
| template<typename T> |
| void RotateAndTranslatePoint(const T* rotation, |
| const T* translation, |
| const T* point, |
| T* result); |
| |
| |
| Then we can now do the following, |
| |
| .. code-block:: c++ |
| |
| struct CameraProjection { |
| CameraProjection(double* observation) { |
| intrinsic_projection_.reset( |
| new CostFunctionToFunctor<2, 5, 3>(new IntrinsicProjection(observation_))); |
| } |
| template <typename T> |
| bool operator(const T* rotation, |
| const T* translation, |
| const T* intrinsics, |
| const T* point, |
| T* residual) const { |
| T transformed_point[3]; |
| RotateAndTranslatePoint(rotation, translation, point, transformed_point); |
| |
| // Note that we call intrinsic_projection_, just like it was |
| // any other templated functor. |
| return (*intrinsic_projection_)(intrinsics, transformed_point, residual); |
| } |
| |
| private: |
| scoped_ptr<CostFunctionToFunctor<2,5,3> > intrinsic_projection_; |
| }; |
| |
| |
| :class:`NumericDiffFunctor` |
| --------------------------- |
| |
| .. class:: NumericDiffFunctor |
| |
| A wrapper class that takes a variadic functor evaluating a |
| function, numerically differentiates it and makes it available as a |
| templated functor so that it can be easily used as part of Ceres' |
| automatic differentiation framework. |
| |
| For example, let us assume that |
| |
| .. code-block:: c++ |
| |
| struct IntrinsicProjection |
| IntrinsicProjection(const double* observations); |
| bool operator()(const double* calibration, |
| const double* point, |
| double* residuals); |
| }; |
| |
| is a functor that implements the projection of a point in its local |
| coordinate system onto its image plane and subtracts it from the |
| observed point projection. |
| |
| Now we would like to compose the action of this functor with the |
| action of camera extrinsics, i.e., rotation and translation, which |
| is given by the following templated function |
| |
| .. code-block:: c++ |
| |
| template<typename T> |
| void RotateAndTranslatePoint(const T* rotation, |
| const T* translation, |
| const T* point, |
| T* result); |
| |
| To compose the extrinsics and intrinsics, we can construct a |
| ``CameraProjection`` functor as follows. |
| |
| .. code-block:: c++ |
| |
| struct CameraProjection { |
| typedef NumericDiffFunctor<IntrinsicProjection, CENTRAL, 2, 5, 3> |
| IntrinsicProjectionFunctor; |
| |
| CameraProjection(double* observation) { |
| intrinsic_projection_.reset( |
| new IntrinsicProjectionFunctor(observation)) { |
| } |
| |
| template <typename T> |
| bool operator(const T* rotation, |
| const T* translation, |
| const T* intrinsics, |
| const T* point, |
| T* residuals) const { |
| T transformed_point[3]; |
| RotateAndTranslatePoint(rotation, translation, point, transformed_point); |
| return (*intrinsic_projection_)(intrinsics, transformed_point, residual); |
| } |
| |
| private: |
| scoped_ptr<IntrinsicProjectionFunctor> intrinsic_projection_; |
| }; |
| |
| Here, we made the choice of using ``CENTRAL`` differences to compute |
| the jacobian of ``IntrinsicProjection``. |
| |
| Now, we are ready to construct an automatically differentiated cost |
| function as |
| |
| .. code-block:: c++ |
| |
| CostFunction* cost_function = |
| new AutoDiffCostFunction<CameraProjection, 2, 3, 3, 5>( |
| new CameraProjection(observations)); |
| |
| ``cost_function`` now seamlessly integrates automatic |
| differentiation of ``RotateAndTranslatePoint`` with a numerically |
| differentiated version of ``IntrinsicProjection``. |
| |
| |
| :class:`LossFunction` |
| --------------------- |
| |
| .. class:: LossFunction |
| |
| For least squares problems where the minimization may encounter |
| input terms that contain outliers, that is, completely bogus |
| measurements, it is important to use a loss function that reduces |
| their influence. |
| |
| Consider a structure from motion problem. The unknowns are 3D |
| points and camera parameters, and the measurements are image |
| coordinates describing the expected reprojected position for a |
| point in a camera. For example, we want to model the geometry of a |
| street scene with fire hydrants and cars, observed by a moving |
| camera with unknown parameters, and the only 3D points we care |
| about are the pointy tippy-tops of the fire hydrants. Our magic |
| image processing algorithm, which is responsible for producing the |
| measurements that are input to Ceres, has found and matched all |
| such tippy-tops in all image frames, except that in one of the |
| frame it mistook a car's headlight for a hydrant. If we didn't do |
| anything special the residual for the erroneous measurement will |
| result in the entire solution getting pulled away from the optimum |
| to reduce the large error that would otherwise be attributed to the |
| wrong measurement. |
| |
| Using a robust loss function, the cost for large residuals is |
| reduced. In the example above, this leads to outlier terms getting |
| down-weighted so they do not overly influence the final solution. |
| |
| .. code-block:: c++ |
| |
| class LossFunction { |
| public: |
| virtual void Evaluate(double s, double out[3]) const = 0; |
| }; |
| |
| |
| The key method is :func:`LossFunction::Evaluate`, which given a |
| non-negative scalar ``s``, computes |
| |
| .. math:: out = \begin{bmatrix}\rho(s), & \rho'(s), & \rho''(s)\end{bmatrix} |
| |
| Here the convention is that the contribution of a term to the cost |
| function is given by :math:`\frac{1}{2}\rho(s)`, where :math:`s |
| =\|f_i\|^2`. Calling the method with a negative value of :math:`s` |
| is an error and the implementations are not required to handle that |
| case. |
| |
| Most sane choices of :math:`\rho` satisfy: |
| |
| .. math:: |
| |
| \rho(0) &= 0\\ |
| \rho'(0) &= 1\\ |
| \rho'(s) &< 1 \text{ in the outlier region}\\ |
| \rho''(s) &< 0 \text{ in the outlier region} |
| |
| so that they mimic the squared cost for small residuals. |
| |
| **Scaling** |
| |
| |
| Given one robustifier :math:`\rho(s)` one can change the length |
| scale at which robustification takes place, by adding a scale |
| factor :math:`a > 0` which gives us :math:`\rho(s,a) = a^2 \rho(s / |
| a^2)` and the first and second derivatives as :math:`\rho'(s / |
| a^2)` and :math:`(1 / a^2) \rho''(s / a^2)` respectively. |
| |
| |
| The reason for the appearance of squaring is that :math:`a` is in |
| the units of the residual vector norm whereas :math:`s` is a squared |
| norm. For applications it is more convenient to specify :math:`a` than |
| its square. |
| |
| Instances |
| ^^^^^^^^^ |
| |
| Ceres includes a number of other loss functions. For simplicity we |
| described their unscaled versions. The figure below illustrates their |
| shape graphically. More details can be found in |
| ``include/ceres/loss_function.h``. |
| |
| .. figure:: loss.png |
| :figwidth: 500px |
| :height: 400px |
| :align: center |
| |
| Shape of the various common loss functions. |
| |
| .. class:: TrivialLoss |
| |
| .. math:: \rho(s) = s |
| |
| .. class:: HuberLoss |
| |
| .. math:: \rho(s) = \begin{cases} s & s \le 1\\ 2 \sqrt{s} - 1 & s > 1 \end{cases} |
| |
| .. class:: SoftLOneLoss |
| |
| .. math:: \rho(s) = 2 (\sqrt{1+s} - 1) |
| |
| .. class:: CauchyLoss |
| |
| .. math:: \rho(s) = \log(1 + s) |
| |
| .. class:: ArctanLoss |
| |
| .. math:: \rho(s) = \arctan(s) |
| |
| .. class:: TolerantLoss |
| |
| .. math:: \rho(s,a,b) = b \log(1 + e^{(s - a) / b}) - b \log(1 + e^{-a / b}) |
| |
| .. class:: ComposedLoss |
| |
| .. class:: ScaledLoss |
| |
| .. class:: LossFunctionWrapper |
| |
| |
| Theory |
| ^^^^^^ |
| |
| Let us consider a problem with a single problem and a single parameter |
| block. |
| |
| .. math:: |
| |
| \min_x \frac{1}{2}\rho(f^2(x)) |
| |
| |
| Then, the robustified gradient and the Gauss-Newton Hessian are |
| |
| .. math:: |
| |
| g(x) &= \rho'J^\top(x)f(x)\\ |
| H(x) &= J^\top(x)\left(\rho' + 2 \rho''f(x)f^\top(x)\right)J(x) |
| |
| where the terms involving the second derivatives of :math:`f(x)` have |
| been ignored. Note that :math:`H(x)` is indefinite if |
| :math:`\rho''f(x)^\top f(x) + \frac{1}{2}\rho' < 0`. If this is not |
| the case, then its possible to re-weight the residual and the Jacobian |
| matrix such that the corresponding linear least squares problem for |
| the robustified Gauss-Newton step. |
| |
| |
| Let :math:`\alpha` be a root of |
| |
| .. math:: \frac{1}{2}\alpha^2 - \alpha - \frac{\rho''}{\rho'}\|f(x)\|^2 = 0. |
| |
| |
| Then, define the rescaled residual and Jacobian as |
| |
| .. math:: |
| |
| \tilde{f}(x) &= \frac{\sqrt{\rho'}}{1 - \alpha} f(x)\\ |
| \tilde{J}(x) &= \sqrt{\rho'}\left(1 - \alpha |
| \frac{f(x)f^\top(x)}{\left\|f(x)\right\|^2} \right)J(x) |
| |
| |
| In the case :math:`2 \rho''\left\|f(x)\right\|^2 + \rho' \lesssim 0`, |
| we limit :math:`\alpha \le 1- \epsilon` for some small |
| :math:`\epsilon`. For more details see [Triggs]_. |
| |
| With this simple rescaling, one can use any Jacobian based non-linear |
| least squares algorithm to robustifed non-linear least squares |
| problems. |
| |
| |
| :class:`LocalParameterization` |
| ------------------------------ |
| |
| .. class:: LocalParameterization |
| |
| .. code-block:: c++ |
| |
| class LocalParameterization { |
| public: |
| virtual ~LocalParameterization() {} |
| virtual bool Plus(const double* x, |
| const double* delta, |
| double* x_plus_delta) const = 0; |
| virtual bool ComputeJacobian(const double* x, double* jacobian) const = 0; |
| virtual int GlobalSize() const = 0; |
| virtual int LocalSize() const = 0; |
| }; |
| |
| Sometimes the parameters :math:`x` can overparameterize a |
| problem. In that case it is desirable to choose a parameterization |
| to remove the null directions of the cost. More generally, if |
| :math:`x` lies on a manifold of a smaller dimension than the |
| ambient space that it is embedded in, then it is numerically and |
| computationally more effective to optimize it using a |
| parameterization that lives in the tangent space of that manifold |
| at each point. |
| |
| For example, a sphere in three dimensions is a two dimensional |
| manifold, embedded in a three dimensional space. At each point on |
| the sphere, the plane tangent to it defines a two dimensional |
| tangent space. For a cost function defined on this sphere, given a |
| point :math:`x`, moving in the direction normal to the sphere at |
| that point is not useful. Thus a better way to parameterize a point |
| on a sphere is to optimize over two dimensional vector |
| :math:`\Delta x` in the tangent space at the point on the sphere |
| point and then "move" to the point :math:`x + \Delta x`, where the |
| move operation involves projecting back onto the sphere. Doing so |
| removes a redundant dimension from the optimization, making it |
| numerically more robust and efficient. |
| |
| More generally we can define a function |
| |
| .. math:: x' = \boxplus(x, \Delta x), |
| |
| where :math:`x` has the same size as :math:`x`, and :math:`\Delta |
| x` is of size less than or equal to :math:`x`. The function |
| :math:`\boxplus`, generalizes the definition of vector |
| addition. Thus it satisfies the identity |
| |
| .. math:: \boxplus(x, 0) = x,\quad \forall x. |
| |
| Instances of :class:`LocalParameterization` implement the |
| :math:`\boxplus` operation and its derivative with respect to |
| :math:`\Delta x` at :math:`\Delta x = 0`. |
| |
| |
| .. function:: int LocalParameterization::GlobalSize() |
| |
| The dimension of the ambient space in which the parameter block |
| :math:`x` lives. |
| |
| .. function:: int LocalParamterization::LocaLocalSize() |
| |
| The size of the tangent space |
| that :math:`\Delta x` lives in. |
| |
| .. function:: bool LocalParameterization::Plus(const double* x, const double* delta, double* x_plus_delta) const |
| |
| :func:`LocalParameterization::Plus` implements :math:`\boxplus(x,\Delta x)`. |
| |
| .. function:: bool LocalParameterization::ComputeJacobian(const double* x, double* jacobian) const |
| |
| Computes the Jacobian matrix |
| |
| .. math:: J = \left . \frac{\partial }{\partial \Delta x} \boxplus(x,\Delta x)\right|_{\Delta x = 0} |
| |
| in row major form. |
| |
| Instances |
| ^^^^^^^^^ |
| |
| .. class:: IdentityParameterization |
| |
| A trivial version of :math:`\boxplus` is when :math:`\Delta x` is |
| of the same size as :math:`x` and |
| |
| .. math:: \boxplus(x, \Delta x) = x + \Delta x |
| |
| .. class:: SubsetParameterization |
| |
| A more interesting case if :math:`x` is a two dimensional vector, |
| and the user wishes to hold the first coordinate constant. Then, |
| :math:`\Delta x` is a scalar and :math:`\boxplus` is defined as |
| |
| .. math:: |
| |
| \boxplus(x, \Delta x) = x + \left[ \begin{array}{c} 0 \\ 1 |
| \end{array} \right] \Delta x |
| |
| :class:`SubsetParameterization` generalizes this construction to |
| hold any part of a parameter block constant. |
| |
| .. class:: QuaternionParameterization |
| |
| Another example that occurs commonly in Structure from Motion |
| problems is when camera rotations are parameterized using a |
| quaternion. There, it is useful only to make updates orthogonal to |
| that 4-vector defining the quaternion. One way to do this is to let |
| :math:`\Delta x` be a 3 dimensional vector and define |
| :math:`\boxplus` to be |
| |
| .. math:: \boxplus(x, \Delta x) = \left[ \cos(|\Delta x|), \frac{\sin\left(|\Delta x|\right)}{|\Delta x|} \Delta x \right] * x |
| :label: quaternion |
| |
| The multiplication between the two 4-vectors on the right hand side |
| is the standard quaternion |
| product. :class:`QuaternionParameterization` is an implementation |
| of :eq:`quaternion`. |
| |
| |
| :class:`Problem` |
| ---------------- |
| |
| .. class:: Problem |
| |
| :class:`Problem` holds the robustified non-linear least squares |
| problem :eq:`ceresproblem`. To create a least squares problem, use |
| the :func:`Problem::AddResidualBlock` and |
| :func:`Problem::AddParameterBlock` methods. |
| |
| For example a problem containing 3 parameter blocks of sizes 3, 4 |
| and 5 respectively and two residual blocks of size 2 and 6: |
| |
| .. code-block:: c++ |
| |
| double x1[] = { 1.0, 2.0, 3.0 }; |
| double x2[] = { 1.0, 2.0, 3.0, 5.0 }; |
| double x3[] = { 1.0, 2.0, 3.0, 6.0, 7.0 }; |
| |
| Problem problem; |
| problem.AddResidualBlock(new MyUnaryCostFunction(...), x1); |
| problem.AddResidualBlock(new MyBinaryCostFunction(...), x2, x3); |
| |
| :func:`Problem::AddResidualBlock` as the name implies, adds a |
| residual block to the problem. It adds a :class:`CostFunction` , an |
| optional :class:`LossFunction` and connects the |
| :class:`CostFunction` to a set of parameter block. |
| |
| The cost function carries with it information about the sizes of |
| the parameter blocks it expects. The function checks that these |
| match the sizes of the parameter blocks listed in |
| ``parameter_blocks``. The program aborts if a mismatch is |
| detected. ``loss_function`` can be ``NULL``, in which case the cost |
| of the term is just the squared norm of the residuals. |
| |
| The user has the option of explicitly adding the parameter blocks |
| using :func:`Problem::AddParameterBlock`. This causes additional correctness |
| checking; however, :func:`Problem::AddResidualBlock` implicitly adds the |
| parameter blocks if they are not present, so calling |
| :func:`Problem::AddParameterBlock` explicitly is not required. |
| |
| |
| :class:`Problem` by default takes ownership of the ``cost_function`` and |
| ``loss_function`` pointers. These objects remain live for the life of |
| the :class:`Problem` object. If the user wishes to keep control over the |
| destruction of these objects, then they can do this by setting the |
| corresponding enums in the ``Problem::Options`` struct. |
| |
| |
| Note that even though the Problem takes ownership of ``cost_function`` |
| and ``loss_function``, it does not preclude the user from re-using |
| them in another residual block. The destructor takes care to call |
| delete on each ``cost_function`` or ``loss_function`` pointer only |
| once, regardless of how many residual blocks refer to them. |
| |
| :func:`Problem::AddParameterBlock` explicitly adds a parameter |
| block to the :class:`Problem`. Optionally it allows the user to |
| associate a :class:`LocalParameterization` object with the parameter |
| block too. Repeated calls with the same arguments are |
| ignored. Repeated calls with the same double pointer but a |
| different size results in undefined behaviour. |
| |
| You can set any parameter block to be constant using |
| :func:`Problem::SetParameterBlockConstant` and undo this using |
| :func:`SetParameterBlockVariable`. |
| |
| In fact you can set any number of parameter blocks to be constant, |
| and Ceres is smart enough to figure out what part of the problem |
| you have constructed depends on the parameter blocks that are free |
| to change and only spends time solving it. So for example if you |
| constructed a problem with a million parameter blocks and 2 million |
| residual blocks, but then set all but one parameter blocks to be |
| constant and say only 10 residual blocks depend on this one |
| non-constant parameter block. Then the computational effort Ceres |
| spends in solving this problem will be the same if you had defined |
| a problem with one parameter block and 10 residual blocks. |
| |
| **Ownership** |
| |
| :class:`Problem` by default takes ownership of the |
| ``cost_function``, ``loss_function`` and ``local_parameterization`` |
| pointers. These objects remain live for the life of the |
| :class:`Problem`. If the user wishes to keep control over the |
| destruction of these objects, then they can do this by setting the |
| corresponding enums in the :class:`Problem::Options` struct. |
| |
| Even though :class:`Problem` takes ownership of these pointers, it |
| does not preclude the user from re-using them in another residual |
| or parameter block. The destructor takes care to call delete on |
| each pointer only once. |
| |
| |
| .. function:: ResidualBlockId Problem::AddResidualBlock(CostFunction* cost_function, LossFunction* loss_function, const vector<double*> parameter_blocks) |
| |
| Add a residual block to the overall cost function. The cost |
| function carries with it information about the sizes of the |
| parameter blocks it expects. The function checks that these match |
| the sizes of the parameter blocks listed in parameter_blocks. The |
| program aborts if a mismatch is detected. loss_function can be |
| NULL, in which case the cost of the term is just the squared norm |
| of the residuals. |
| |
| The user has the option of explicitly adding the parameter blocks |
| using AddParameterBlock. This causes additional correctness |
| checking; however, AddResidualBlock implicitly adds the parameter |
| blocks if they are not present, so calling AddParameterBlock |
| explicitly is not required. |
| |
| The Problem object by default takes ownership of the |
| cost_function and loss_function pointers. These objects remain |
| live for the life of the Problem object. If the user wishes to |
| keep control over the destruction of these objects, then they can |
| do this by setting the corresponding enums in the Options struct. |
| |
| Note: Even though the Problem takes ownership of cost_function |
| and loss_function, it does not preclude the user from re-using |
| them in another residual block. The destructor takes care to call |
| delete on each cost_function or loss_function pointer only once, |
| regardless of how many residual blocks refer to them. |
| |
| Example usage: |
| |
| .. code-block:: c++ |
| |
| double x1[] = {1.0, 2.0, 3.0}; |
| double x2[] = {1.0, 2.0, 5.0, 6.0}; |
| double x3[] = {3.0, 6.0, 2.0, 5.0, 1.0}; |
| |
| Problem problem; |
| |
| problem.AddResidualBlock(new MyUnaryCostFunction(...), NULL, x1); |
| problem.AddResidualBlock(new MyBinaryCostFunction(...), NULL, x2, x1); |
| |
| |
| .. function:: void Problem::AddParameterBlock(double* values, int size, LocalParameterization* local_parameterization) |
| |
| Add a parameter block with appropriate size to the problem. |
| Repeated calls with the same arguments are ignored. Repeated calls |
| with the same double pointer but a different size results in |
| undefined behaviour. |
| |
| .. function:: void Problem::AddParameterBlock(double* values, int size) |
| |
| Add a parameter block with appropriate size and parameterization to |
| the problem. Repeated calls with the same arguments are |
| ignored. Repeated calls with the same double pointer but a |
| different size results in undefined behaviour. |
| |
| .. function:: void Problem::RemoveResidualBlock(ResidualBlockId residual_block) |
| |
| Remove a parameter block from the problem. The parameterization of |
| the parameter block, if it exists, will persist until the deletion |
| of the problem (similar to cost/loss functions in residual block |
| removal). Any residual blocks that depend on the parameter are also |
| removed, as described above in RemoveResidualBlock(). If |
| Problem::Options::enable_fast_parameter_block_removal is true, then |
| the removal is fast (almost constant time). Otherwise, removing a |
| parameter block will incur a scan of the entire Problem object. |
| |
| WARNING: Removing a residual or parameter block will destroy the |
| implicit ordering, rendering the jacobian or residuals returned |
| from the solver uninterpretable. If you depend on the evaluated |
| jacobian, do not use remove! This may change in a future release. |
| |
| .. function:: void Problem::RemoveResidualBlock(ResidualBlockId residual_block) |
| |
| Remove a residual block from the problem. Any parameters that the residual |
| block depends on are not removed. The cost and loss functions for the |
| residual block will not get deleted immediately; won't happen until the |
| problem itself is deleted. |
| |
| WARNING: Removing a residual or parameter block will destroy the implicit |
| ordering, rendering the jacobian or residuals returned from the solver |
| uninterpretable. If you depend on the evaluated jacobian, do not use |
| remove! This may change in a future release. |
| Hold the indicated parameter block constant during optimization. |
| |
| |
| .. function:: void Problem::SetParameterBlockConstant(double* values) |
| |
| Hold the indicated parameter block constant during optimization. |
| |
| .. function:: void Problem::SetParameterBlockVariable(double* values) |
| |
| Allow the indicated parameter to vary during optimization. |
| |
| |
| .. function:: void Problem::SetParameterization(double* values, LocalParameterization* local_parameterization) |
| |
| Set the local parameterization for one of the parameter blocks. |
| The local_parameterization is owned by the Problem by default. It |
| is acceptable to set the same parameterization for multiple |
| parameters; the destructor is careful to delete local |
| parameterizations only once. The local parameterization can only be |
| set once per parameter, and cannot be changed once set. |
| |
| .. function:: int Problem::NumParameterBlocks() const |
| |
| Number of parameter blocks in the problem. Always equals |
| parameter_blocks().size() and parameter_block_sizes().size(). |
| |
| .. function:: int Problem::NumParameters() const |
| |
| The size of the parameter vector obtained by summing over the sizes |
| of all the parameter blocks. |
| |
| .. function:: int Problem::NumResidualBlocks() const |
| |
| Number of residual blocks in the problem. Always equals |
| residual_blocks().size(). |
| |
| .. function:: int Problem::NumResiduals() const |
| |
| The size of the residual vector obtained by summing over the sizes |
| of all of the residual blocks. |
| |
| |
| ``rotation.h`` |
| -------------- |
| |
| Many applications of Ceres Solver involve optimization problems where |
| some of the variables correspond to rotations. To ease the pain of |
| work with the various representations of rotations (angle-axis, |
| quaternion and matrix) we provide a handy set of templated |
| functions. These functions are templated so that the user can use them |
| within Ceres Solver's automatic differentiation framework. |
| |
| .. function:: void AngleAxisToQuaternion<T>(T const* angle_axis, T* quaternion) |
| |
| Convert a value in combined axis-angle representation to a |
| quaternion. |
| |
| The value ``angle_axis`` is a triple whose norm is an angle in radians, |
| and whose direction is aligned with the axis of rotation, and |
| ``quaternion`` is a 4-tuple that will contain the resulting quaternion. |
| |
| .. function:: void QuaternionToAngleAxis<T>(T const* quaternion, T* angle_axis) |
| |
| Convert a quaternion to the equivalent combined axis-angle |
| representation. |
| |
| The value ``quaternion`` must be a unit quaternion - it is not |
| normalized first, and ``angle_axis`` will be filled with a value |
| whose norm is the angle of rotation in radians, and whose direction |
| is the axis of rotation. |
| |
| .. function:: void RotationMatrixToAngleAxis<T, row_stride, col_stride>(const MatrixAdapter<const T, row_stride, col_stride>& R, T * angle_axis) |
| .. function:: void AngleAxisToRotationMatrix<T, row_stride, col_stride>(T const * angle_axis, const MatrixAdapter<T, row_stride, col_stride>& R) |
| .. function:: void RotationMatrixToAngleAxis<T>(T const * R, T * angle_axis) |
| .. function:: void AngleAxisToRotationMatrix<T>(T const * angle_axis, T * R) |
| |
| Conversions between 3x3 rotation matrix with given column and row strides and |
| axis-angle rotation representations. The functions that take a pointer to T instead |
| of a MatrixAdapter assume a column major representation with unit row stride and a column stride of 3. |
| |
| .. function:: void EulerAnglesToRotationMatrix<T, row_stride, col_stride>(const T* euler, const MatrixAdapter<T, row_stride, col_stride>& R) |
| .. function:: void EulerAnglesToRotationMatrix<T>(const T* euler, int row_stride, T* R) |
| |
| Conversions between 3x3 rotation matrix with given column and row strides and |
| Euler angle (in degrees) rotation representations. |
| |
| The {pitch,roll,yaw} Euler angles are rotations around the {x,y,z} |
| axes, respectively. They are applied in that same order, so the |
| total rotation R is Rz * Ry * Rx. |
| |
| The function that takes a pointer to T as the rotation matrix assumes a row |
| major representation with unit column stride and a row stride of 3. |
| The additional parameter row_stride is required to be 3. |
| |
| .. function:: void QuaternionToScaledRotation<T, row_stride, col_stride>(const T q[4], const MatrixAdapter<T, row_stride, col_stride>& R) |
| .. function:: void QuaternionToScaledRotation<T>(const T q[4], T R[3 * 3]) |
| |
| Convert a 4-vector to a 3x3 scaled rotation matrix. |
| |
| The choice of rotation is such that the quaternion |
| :math:`\begin{bmatrix} 1 &0 &0 &0\end{bmatrix}` goes to an identity |
| matrix and for small :math:`a, b, c` the quaternion |
| :math:`\begin{bmatrix}1 &a &b &c\end{bmatrix}` goes to the matrix |
| |
| .. math:: |
| |
| I + 2 \begin{bmatrix} 0 & -c & b \\ c & 0 & -a\\ -b & a & 0 |
| \end{bmatrix} + O(q^2) |
| |
| which corresponds to a Rodrigues approximation, the last matrix |
| being the cross-product matrix of :math:`\begin{bmatrix} a& b& |
| c\end{bmatrix}`. Together with the property that :math:`R(q1 * q2) |
| = R(q1) * R(q2)` this uniquely defines the mapping from :math:`q` to |
| :math:`R`. |
| |
| In the function that accepts a pointer to T instead of a MatrixAdapter, |
| the rotation matrix ``R`` is a row-major matrix with unit column stride |
| and a row stride of 3. |
| |
| No normalization of the quaternion is performed, i.e. |
| :math:`R = \|q\|^2 Q`, where :math:`Q` is an orthonormal matrix |
| such that :math:`\det(Q) = 1` and :math:`Q*Q' = I`. |
| |
| |
| .. function:: void QuaternionToRotation<T>(const T q[4], const MatrixAdapter<T, row_stride, col_stride>& R) |
| .. function:: void QuaternionToRotation<T>(const T q[4], T R[3 * 3]) |
| |
| Same as above except that the rotation matrix is normalized by the |
| Frobenius norm, so that :math:`R R' = I` (and :math:`\det(R) = 1`). |
| |
| .. function:: void UnitQuaternionRotatePoint<T>(const T q[4], const T pt[3], T result[3]) |
| |
| Rotates a point pt by a quaternion q: |
| |
| .. math:: \text{result} = R(q) \text{pt} |
| |
| Assumes the quaternion is unit norm. If you pass in a quaternion |
| with :math:`|q|^2 = 2` then you WILL NOT get back 2 times the |
| result you get for a unit quaternion. |
| |
| |
| .. function:: void QuaternionRotatePoint<T>(const T q[4], const T pt[3], T result[3]) |
| |
| With this function you do not need to assume that q has unit norm. |
| It does assume that the norm is non-zero. |
| |
| .. function:: void QuaternionProduct<T>(const T z[4], const T w[4], T zw[4]) |
| |
| .. math:: zw = z * w |
| |
| where :math:`*` is the Quaternion product between 4-vectors. |
| |
| |
| .. function:: void CrossProduct<T>(const T x[3], const T y[3], T x_cross_y[3]) |
| |
| .. math:: \text{x_cross_y} = x \times y |
| |
| .. function:: void AngleAxisRotatePoint<T>(const T angle_axis[3], const T pt[3], T result[3]) |
| |
| .. math:: y = R(\text{angle_axis}) x |