| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
 | // http://code.google.com/p/ceres-solver/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 | // | 
 | // Helpers for making CostFunctions as needed by the least squares framework, | 
 | // with Jacobians computed via automatic differentiation. For more information | 
 | // on automatic differentation, see the wikipedia article at | 
 | // http://en.wikipedia.org/wiki/Automatic_differentiation | 
 | // | 
 | // To get an auto differentiated cost function, you must define a class with a | 
 | // templated operator() (a functor) that computes the cost function in terms of | 
 | // the template parameter T. The autodiff framework substitutes appropriate | 
 | // "jet" objects for T in order to compute the derivative when necessary, but | 
 | // this is hidden, and you should write the function as if T were a scalar type | 
 | // (e.g. a double-precision floating point number). | 
 | // | 
 | // The function must write the computed value in the last argument (the only | 
 | // non-const one) and return true to indicate success. | 
 | // | 
 | // For example, consider a scalar error e = k - x'y, where both x and y are | 
 | // two-dimensional column vector parameters, the prime sign indicates | 
 | // transposition, and k is a constant. The form of this error, which is the | 
 | // difference between a constant and an expression, is a common pattern in least | 
 | // squares problems. For example, the value x'y might be the model expectation | 
 | // for a series of measurements, where there is an instance of the cost function | 
 | // for each measurement k. | 
 | // | 
 | // The actual cost added to the total problem is e^2, or (k - x'k)^2; however, | 
 | // the squaring is implicitly done by the optimization framework. | 
 | // | 
 | // To write an auto-differentiable cost function for the above model, first | 
 | // define the object | 
 | // | 
 | //   class MyScalarCostFunction { | 
 | //     MyScalarCostFunction(double k): k_(k) {} | 
 | // | 
 | //     template <typename T> | 
 | //     bool operator()(const T* const x , const T* const y, T* e) const { | 
 | //       e[0] = T(k_) - x[0] * y[0] + x[1] * y[1]; | 
 | //       return true; | 
 | //     } | 
 | // | 
 | //    private: | 
 | //     double k_; | 
 | //   }; | 
 | // | 
 | // Note that in the declaration of operator() the input parameters x and y come | 
 | // first, and are passed as const pointers to arrays of T. If there were three | 
 | // input parameters, then the third input parameter would come after y. The | 
 | // output is always the last parameter, and is also a pointer to an array. In | 
 | // the example above, e is a scalar, so only e[0] is set. | 
 | // | 
 | // Then given this class definition, the auto differentiated cost function for | 
 | // it can be constructed as follows. | 
 | // | 
 | //   CostFunction* cost_function | 
 | //       = new AutoDiffCostFunction<MyScalarCostFunction, 1, 2, 2>( | 
 | //           new MyScalarCostFunction(1.0));              ^  ^  ^ | 
 | //                                                        |  |  | | 
 | //                            Dimension of residual ------+  |  | | 
 | //                            Dimension of x ----------------+  | | 
 | //                            Dimension of y -------------------+ | 
 | // | 
 | // In this example, there is usually an instance for each measumerent of k. | 
 | // | 
 | // In the instantiation above, the template parameters following | 
 | // "MyScalarCostFunction", "1, 2, 2", describe the functor as computing a | 
 | // 1-dimensional output from two arguments, both 2-dimensional. | 
 | // | 
 | // The autodiff cost function also supports cost functions with a | 
 | // runtime-determined number of residuals. For example: | 
 | // | 
 | //   CostFunction* cost_function | 
 | //       = new AutoDiffCostFunction<MyScalarCostFunction, DYNAMIC, 2, 2>( | 
 | //           new CostFunctionWithDynamicNumResiduals(1.0),   ^     ^  ^ | 
 | //           runtime_number_of_residuals); <----+            |     |  | | 
 | //                                              |            |     |  | | 
 | //                                              |            |     |  | | 
 | //             Actual number of residuals ------+            |     |  | | 
 | //             Indicate dynamic number of residuals ---------+     |  | | 
 | //             Dimension of x -------------------------------------+  | | 
 | //             Dimension of y ----------------------------------------+ | 
 | // | 
 | // The framework can currently accommodate cost functions of up to 6 independent | 
 | // variables, and there is no limit on the dimensionality of each of them. | 
 | // | 
 | // WARNING #1: Since the functor will get instantiated with different types for | 
 | // T, you must to convert from other numeric types to T before mixing | 
 | // computations with other variables of type T. In the example above, this is | 
 | // seen where instead of using k_ directly, k_ is wrapped with T(k_). | 
 | // | 
 | // WARNING #2: A common beginner's error when first using autodiff cost | 
 | // functions is to get the sizing wrong. In particular, there is a tendency to | 
 | // set the template parameters to (dimension of residual, number of parameters) | 
 | // instead of passing a dimension parameter for *every parameter*. In the | 
 | // example above, that would be <MyScalarCostFunction, 1, 2>, which is missing | 
 | // the last '2' argument. Please be careful when setting the size parameters. | 
 |  | 
 | #ifndef CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_ | 
 | #define CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_ | 
 |  | 
 | #include <glog/logging.h> | 
 | #include "ceres/internal/autodiff.h" | 
 | #include "ceres/internal/scoped_ptr.h" | 
 | #include "ceres/sized_cost_function.h" | 
 | #include "ceres/types.h" | 
 |  | 
 | namespace ceres { | 
 |  | 
 | // A cost function which computes the derivative of the cost with respect to | 
 | // the parameters (a.k.a. the jacobian) using an autodifferentiation framework. | 
 | // The first template argument is the functor object, described in the header | 
 | // comment. The second argument is the dimension of the residual (or | 
 | // ceres::DYNAMIC to indicate it will be set at runtime), and subsequent | 
 | // arguments describe the size of the Nth parameter, one per parameter. | 
 | // | 
 | // The constructors take ownership of the cost functor. | 
 | // | 
 | // If the number of residuals (argument "M" below) is ceres::DYNAMIC, then the | 
 | // two-argument constructor must be used. The second constructor takes a number | 
 | // of residuals (in addition to the templated number of residuals). This allows | 
 | // for varying the number of residuals for a single autodiff cost function at | 
 | // runtime. | 
 | template <typename CostFunctor, | 
 |           int M,        // Number of residuals, or ceres::DYNAMIC. | 
 |           int N0,       // Number of parameters in block 0. | 
 |           int N1 = 0,   // Number of parameters in block 1. | 
 |           int N2 = 0,   // Number of parameters in block 2. | 
 |           int N3 = 0,   // Number of parameters in block 3. | 
 |           int N4 = 0,   // Number of parameters in block 4. | 
 |           int N5 = 0>   // Number of parameters in block 5. | 
 | class AutoDiffCostFunction : | 
 |   public SizedCostFunction<M, N0, N1, N2, N3, N4, N5> { | 
 |  public: | 
 |   // Takes ownership of functor. Uses the template-provided value for the | 
 |   // number of residuals ("M"). | 
 |   explicit AutoDiffCostFunction(CostFunctor* functor) | 
 |       : functor_(functor) { | 
 |     CHECK_NE(M, DYNAMIC) << "Can't run the fixed-size constructor if the " | 
 |                           << "number of residuals is set to ceres::DYNAMIC."; | 
 |   } | 
 |  | 
 |   // Takes ownership of functor. Ignores the template-provided number of | 
 |   // residuals ("M") in favor of the "num_residuals" argument provided. | 
 |   // | 
 |   // This allows for having autodiff cost functions which return varying | 
 |   // numbers of residuals at runtime. | 
 |   AutoDiffCostFunction(CostFunctor* functor, int num_residuals) | 
 |       : functor_(functor) { | 
 |     CHECK_EQ(M, DYNAMIC) << "Can't run the dynamic-size constructor if the " | 
 |                           << "number of residuals is not ceres::DYNAMIC."; | 
 |     SizedCostFunction<M, N0, N1, N2, N3, N4, N5>::set_num_residuals(num_residuals); | 
 |   } | 
 |  | 
 |   virtual ~AutoDiffCostFunction() {} | 
 |  | 
 |   // Implementation details follow; clients of the autodiff cost function should | 
 |   // not have to examine below here. | 
 |   // | 
 |   // To handle varardic cost functions, some template magic is needed. It's | 
 |   // mostly hidden inside autodiff.h. | 
 |   virtual bool Evaluate(double const* const* parameters, | 
 |                         double* residuals, | 
 |                         double** jacobians) const { | 
 |     if (!jacobians) { | 
 |       return internal::VariadicEvaluate< | 
 |           CostFunctor, double, N0, N1, N2, N3, N4, N5> | 
 |           ::Call(*functor_, parameters, residuals); | 
 |     } | 
 |     return internal::AutoDiff<CostFunctor, double, | 
 |            N0, N1, N2, N3, N4, N5>::Differentiate( | 
 |                *functor_, | 
 |                parameters, | 
 |                SizedCostFunction<M, N0, N1, N2, N3, N4, N5>::num_residuals(), | 
 |                residuals, | 
 |                jacobians); | 
 |   } | 
 |  | 
 |  private: | 
 |   internal::scoped_ptr<CostFunctor> functor_; | 
 | }; | 
 |  | 
 | }  // namespace ceres | 
 |  | 
 | #endif  // CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_ |