|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: Sameer Agarwal (sameeragarwal@google.com) | 
|  | //         David Gallup (dgallup@google.com) | 
|  |  | 
|  | #include "ceres/canonical_views_clustering.h" | 
|  |  | 
|  | #include <unordered_map> | 
|  | #include "ceres/graph.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | const int kVertexIds[] = {0, 1, 2, 3}; | 
|  | class CanonicalViewsTest : public ::testing::Test { | 
|  | protected: | 
|  | void SetUp() final { | 
|  | // The graph structure is as follows. | 
|  | // | 
|  | // Vertex weights:   0      2      2      0 | 
|  | //                   V0-----V1-----V2-----V3 | 
|  | // Edge weights:        0.8    0.9    0.3 | 
|  | const double kVertexWeights[] = {0.0, 2.0, 2.0, -1.0}; | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | graph_.AddVertex(i, kVertexWeights[i]); | 
|  | } | 
|  | // Create self edges. | 
|  | // CanonicalViews requires that every view "sees" itself. | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | graph_.AddEdge(i, i, 1.0); | 
|  | } | 
|  |  | 
|  | // Create three edges. | 
|  | const double kEdgeWeights[] = {0.8, 0.9, 0.3}; | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | // The graph interface is directed, so remember to create both | 
|  | // edges. | 
|  | graph_.AddEdge(kVertexIds[i], kVertexIds[i + 1], kEdgeWeights[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ComputeClustering() { | 
|  | ComputeCanonicalViewsClustering(options_, graph_, ¢ers_, &membership_); | 
|  | } | 
|  |  | 
|  | WeightedGraph<int> graph_; | 
|  |  | 
|  | CanonicalViewsClusteringOptions options_; | 
|  | std::vector<int> centers_; | 
|  | std::unordered_map<int, int> membership_; | 
|  | }; | 
|  |  | 
|  | TEST_F(CanonicalViewsTest, ComputeCanonicalViewsTest) { | 
|  | options_.min_views = 0; | 
|  | options_.size_penalty_weight = 0.5; | 
|  | options_.similarity_penalty_weight = 0.0; | 
|  | options_.view_score_weight = 0.0; | 
|  | ComputeClustering(); | 
|  |  | 
|  | // 2 canonical views. | 
|  | EXPECT_EQ(centers_.size(), 2); | 
|  | EXPECT_EQ(centers_[0], kVertexIds[1]); | 
|  | EXPECT_EQ(centers_[1], kVertexIds[3]); | 
|  |  | 
|  | // Check cluster membership. | 
|  | EXPECT_EQ(FindOrDie(membership_, kVertexIds[0]), 0); | 
|  | EXPECT_EQ(FindOrDie(membership_, kVertexIds[1]), 0); | 
|  | EXPECT_EQ(FindOrDie(membership_, kVertexIds[2]), 0); | 
|  | EXPECT_EQ(FindOrDie(membership_, kVertexIds[3]), 1); | 
|  | } | 
|  |  | 
|  | // Increases size penalty so the second canonical view won't be | 
|  | // chosen. | 
|  | TEST_F(CanonicalViewsTest, SizePenaltyTest) { | 
|  | options_.min_views = 0; | 
|  | options_.size_penalty_weight = 2.0; | 
|  | options_.similarity_penalty_weight = 0.0; | 
|  | options_.view_score_weight = 0.0; | 
|  | ComputeClustering(); | 
|  |  | 
|  | // 1 canonical view. | 
|  | EXPECT_EQ(centers_.size(), 1); | 
|  | EXPECT_EQ(centers_[0], kVertexIds[1]); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Increases view score weight so vertex 2 will be chosen. | 
|  | TEST_F(CanonicalViewsTest, ViewScoreTest) { | 
|  | options_.min_views = 0; | 
|  | options_.size_penalty_weight = 0.5; | 
|  | options_.similarity_penalty_weight = 0.0; | 
|  | options_.view_score_weight = 1.0; | 
|  | ComputeClustering(); | 
|  |  | 
|  | // 2 canonical views. | 
|  | EXPECT_EQ(centers_.size(), 2); | 
|  | EXPECT_EQ(centers_[0], kVertexIds[1]); | 
|  | EXPECT_EQ(centers_[1], kVertexIds[2]); | 
|  | } | 
|  |  | 
|  | // Increases similarity penalty so vertex 2 won't be chosen despite | 
|  | // it's view score. | 
|  | TEST_F(CanonicalViewsTest, SimilarityPenaltyTest) { | 
|  | options_.min_views = 0; | 
|  | options_.size_penalty_weight = 0.5; | 
|  | options_.similarity_penalty_weight = 3.0; | 
|  | options_.view_score_weight = 1.0; | 
|  | ComputeClustering(); | 
|  |  | 
|  | // 2 canonical views. | 
|  | EXPECT_EQ(centers_.size(), 1); | 
|  | EXPECT_EQ(centers_[0], kVertexIds[1]); | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |