| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 | // | 
 | // Generic loop for line search based optimization algorithms. | 
 | // | 
 | // This is primarily inpsired by the minFunc packaged written by Mark | 
 | // Schmidt. | 
 | // | 
 | // http://www.di.ens.fr/~mschmidt/Software/minFunc.html | 
 | // | 
 | // For details on the theory and implementation see "Numerical | 
 | // Optimization" by Nocedal & Wright. | 
 |  | 
 | #include "ceres/line_search_minimizer.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <cstdlib> | 
 | #include <cmath> | 
 | #include <memory> | 
 | #include <string> | 
 | #include <vector> | 
 |  | 
 | #include "Eigen/Dense" | 
 | #include "ceres/array_utils.h" | 
 | #include "ceres/evaluator.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/internal/port.h" | 
 | #include "ceres/line_search.h" | 
 | #include "ceres/line_search_direction.h" | 
 | #include "ceres/stringprintf.h" | 
 | #include "ceres/types.h" | 
 | #include "ceres/wall_time.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 | namespace { | 
 |  | 
 | bool EvaluateGradientNorms(Evaluator* evaluator, | 
 |                            const Vector& x, | 
 |                            LineSearchMinimizer::State* state, | 
 |                            std::string* message) { | 
 |   Vector negative_gradient = -state->gradient; | 
 |   Vector projected_gradient_step(x.size()); | 
 |   if (!evaluator->Plus( | 
 |           x.data(), negative_gradient.data(), projected_gradient_step.data())) { | 
 |     *message = "projected_gradient_step = Plus(x, -gradient) failed."; | 
 |     return false; | 
 |   } | 
 |  | 
 |   state->gradient_squared_norm = (x - projected_gradient_step).squaredNorm(); | 
 |   state->gradient_max_norm = | 
 |       (x - projected_gradient_step).lpNorm<Eigen::Infinity>(); | 
 |   return true; | 
 | } | 
 |  | 
 | }  // namespace | 
 |  | 
 | void LineSearchMinimizer::Minimize(const Minimizer::Options& options, | 
 |                                    double* parameters, | 
 |                                    Solver::Summary* summary) { | 
 |   const bool is_not_silent = !options.is_silent; | 
 |   double start_time = WallTimeInSeconds(); | 
 |   double iteration_start_time =  start_time; | 
 |  | 
 |   CHECK(options.evaluator != nullptr); | 
 |   Evaluator* evaluator = options.evaluator.get(); | 
 |   const int num_parameters = evaluator->NumParameters(); | 
 |   const int num_effective_parameters = evaluator->NumEffectiveParameters(); | 
 |  | 
 |   summary->termination_type = NO_CONVERGENCE; | 
 |   summary->num_successful_steps = 0; | 
 |   summary->num_unsuccessful_steps = 0; | 
 |  | 
 |   VectorRef x(parameters, num_parameters); | 
 |  | 
 |   State current_state(num_parameters, num_effective_parameters); | 
 |   State previous_state(num_parameters, num_effective_parameters); | 
 |  | 
 |   IterationSummary iteration_summary; | 
 |   iteration_summary.iteration = 0; | 
 |   iteration_summary.step_is_valid = false; | 
 |   iteration_summary.step_is_successful = false; | 
 |   iteration_summary.cost_change = 0.0; | 
 |   iteration_summary.gradient_max_norm = 0.0; | 
 |   iteration_summary.gradient_norm = 0.0; | 
 |   iteration_summary.step_norm = 0.0; | 
 |   iteration_summary.linear_solver_iterations = 0; | 
 |   iteration_summary.step_solver_time_in_seconds = 0; | 
 |  | 
 |   // Do initial cost and gradient evaluation. | 
 |   if (!evaluator->Evaluate(x.data(), | 
 |                            &(current_state.cost), | 
 |                            NULL, | 
 |                            current_state.gradient.data(), | 
 |                            NULL)) { | 
 |     summary->termination_type = FAILURE; | 
 |     summary->message = "Initial cost and jacobian evaluation failed."; | 
 |     LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!EvaluateGradientNorms(evaluator, x, ¤t_state, &summary->message)) { | 
 |     summary->termination_type = FAILURE; | 
 |     summary->message = "Initial cost and jacobian evaluation failed. " | 
 |         "More details: " + summary->message; | 
 |     LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message; | 
 |     return; | 
 |   } | 
 |  | 
 |   summary->initial_cost = current_state.cost + summary->fixed_cost; | 
 |   iteration_summary.cost = current_state.cost + summary->fixed_cost; | 
 |  | 
 |   iteration_summary.gradient_norm = sqrt(current_state.gradient_squared_norm); | 
 |   iteration_summary.gradient_max_norm = current_state.gradient_max_norm; | 
 |   if (iteration_summary.gradient_max_norm <= options.gradient_tolerance) { | 
 |     summary->message = StringPrintf("Gradient tolerance reached. " | 
 |                                     "Gradient max norm: %e <= %e", | 
 |                                     iteration_summary.gradient_max_norm, | 
 |                                     options.gradient_tolerance); | 
 |     summary->termination_type = CONVERGENCE; | 
 |     VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message; | 
 |     return; | 
 |   } | 
 |  | 
 |   iteration_summary.iteration_time_in_seconds = | 
 |       WallTimeInSeconds() - iteration_start_time; | 
 |   iteration_summary.cumulative_time_in_seconds = | 
 |       WallTimeInSeconds() - start_time | 
 |       + summary->preprocessor_time_in_seconds; | 
 |   summary->iterations.push_back(iteration_summary); | 
 |  | 
 |   LineSearchDirection::Options line_search_direction_options; | 
 |   line_search_direction_options.num_parameters = num_effective_parameters; | 
 |   line_search_direction_options.type = options.line_search_direction_type; | 
 |   line_search_direction_options.nonlinear_conjugate_gradient_type = | 
 |       options.nonlinear_conjugate_gradient_type; | 
 |   line_search_direction_options.max_lbfgs_rank = options.max_lbfgs_rank; | 
 |   line_search_direction_options.use_approximate_eigenvalue_bfgs_scaling = | 
 |       options.use_approximate_eigenvalue_bfgs_scaling; | 
 |   std::unique_ptr<LineSearchDirection> line_search_direction( | 
 |       LineSearchDirection::Create(line_search_direction_options)); | 
 |  | 
 |   LineSearchFunction line_search_function(evaluator); | 
 |  | 
 |   LineSearch::Options line_search_options; | 
 |   line_search_options.interpolation_type = | 
 |       options.line_search_interpolation_type; | 
 |   line_search_options.min_step_size = options.min_line_search_step_size; | 
 |   line_search_options.sufficient_decrease = | 
 |       options.line_search_sufficient_function_decrease; | 
 |   line_search_options.max_step_contraction = | 
 |       options.max_line_search_step_contraction; | 
 |   line_search_options.min_step_contraction = | 
 |       options.min_line_search_step_contraction; | 
 |   line_search_options.max_num_iterations = | 
 |       options.max_num_line_search_step_size_iterations; | 
 |   line_search_options.sufficient_curvature_decrease = | 
 |       options.line_search_sufficient_curvature_decrease; | 
 |   line_search_options.max_step_expansion = | 
 |       options.max_line_search_step_expansion; | 
 |   line_search_options.is_silent = options.is_silent; | 
 |   line_search_options.function = &line_search_function; | 
 |  | 
 |   std::unique_ptr<LineSearch> | 
 |       line_search(LineSearch::Create(options.line_search_type, | 
 |                                      line_search_options, | 
 |                                      &summary->message)); | 
 |   if (line_search.get() == NULL) { | 
 |     summary->termination_type = FAILURE; | 
 |     LOG_IF(ERROR, is_not_silent) << "Terminating: " << summary->message; | 
 |     return; | 
 |   } | 
 |  | 
 |   LineSearch::Summary line_search_summary; | 
 |   int num_line_search_direction_restarts = 0; | 
 |  | 
 |   while (true) { | 
 |     if (!RunCallbacks(options, iteration_summary, summary)) { | 
 |       break; | 
 |     } | 
 |  | 
 |     iteration_start_time = WallTimeInSeconds(); | 
 |     if (iteration_summary.iteration >= options.max_num_iterations) { | 
 |       summary->message = "Maximum number of iterations reached."; | 
 |       summary->termination_type = NO_CONVERGENCE; | 
 |       VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message; | 
 |       break; | 
 |     } | 
 |  | 
 |     const double total_solver_time = iteration_start_time - start_time + | 
 |         summary->preprocessor_time_in_seconds; | 
 |     if (total_solver_time >= options.max_solver_time_in_seconds) { | 
 |       summary->message = "Maximum solver time reached."; | 
 |       summary->termination_type = NO_CONVERGENCE; | 
 |       VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message; | 
 |       break; | 
 |     } | 
 |  | 
 |     iteration_summary = IterationSummary(); | 
 |     iteration_summary.iteration = summary->iterations.back().iteration + 1; | 
 |     iteration_summary.step_is_valid = false; | 
 |     iteration_summary.step_is_successful = false; | 
 |  | 
 |     bool line_search_status = true; | 
 |     if (iteration_summary.iteration == 1) { | 
 |       current_state.search_direction = -current_state.gradient; | 
 |     } else { | 
 |       line_search_status = line_search_direction->NextDirection( | 
 |           previous_state, | 
 |           current_state, | 
 |           ¤t_state.search_direction); | 
 |     } | 
 |  | 
 |     if (!line_search_status && | 
 |         num_line_search_direction_restarts >= | 
 |         options.max_num_line_search_direction_restarts) { | 
 |       // Line search direction failed to generate a new direction, and we | 
 |       // have already reached our specified maximum number of restarts, | 
 |       // terminate optimization. | 
 |       summary->message = | 
 |           StringPrintf("Line search direction failure: specified " | 
 |                        "max_num_line_search_direction_restarts: %d reached.", | 
 |                        options.max_num_line_search_direction_restarts); | 
 |       summary->termination_type = FAILURE; | 
 |       LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message; | 
 |       break; | 
 |     } else if (!line_search_status) { | 
 |       // Restart line search direction with gradient descent on first iteration | 
 |       // as we have not yet reached our maximum number of restarts. | 
 |       CHECK_LT(num_line_search_direction_restarts, | 
 |                options.max_num_line_search_direction_restarts); | 
 |  | 
 |       ++num_line_search_direction_restarts; | 
 |       LOG_IF(WARNING, is_not_silent) | 
 |           << "Line search direction algorithm: " | 
 |           << LineSearchDirectionTypeToString( | 
 |               options.line_search_direction_type) | 
 |           << ", failed to produce a valid new direction at " | 
 |           << "iteration: " << iteration_summary.iteration | 
 |           << ". Restarting, number of restarts: " | 
 |           << num_line_search_direction_restarts << " / " | 
 |           << options.max_num_line_search_direction_restarts | 
 |           << " [max]."; | 
 |       line_search_direction.reset( | 
 |           LineSearchDirection::Create(line_search_direction_options)); | 
 |       current_state.search_direction = -current_state.gradient; | 
 |     } | 
 |  | 
 |     line_search_function.Init(x, current_state.search_direction); | 
 |     current_state.directional_derivative = | 
 |         current_state.gradient.dot(current_state.search_direction); | 
 |  | 
 |     // TODO(sameeragarwal): Refactor this into its own object and add | 
 |     // explanations for the various choices. | 
 |     // | 
 |     // Note that we use !line_search_status to ensure that we treat cases when | 
 |     // we restarted the line search direction equivalently to the first | 
 |     // iteration. | 
 |     const double initial_step_size = | 
 |         (iteration_summary.iteration == 1 || !line_search_status) | 
 |         ? std::min(1.0, 1.0 / current_state.gradient_max_norm) | 
 |         : std::min(1.0, 2.0 * (current_state.cost - previous_state.cost) / | 
 |                    current_state.directional_derivative); | 
 |     // By definition, we should only ever go forwards along the specified search | 
 |     // direction in a line search, most likely cause for this being violated | 
 |     // would be a numerical failure in the line search direction calculation. | 
 |     if (initial_step_size < 0.0) { | 
 |       summary->message = | 
 |           StringPrintf("Numerical failure in line search, initial_step_size is " | 
 |                        "negative: %.5e, directional_derivative: %.5e, " | 
 |                        "(current_cost - previous_cost): %.5e", | 
 |                        initial_step_size, current_state.directional_derivative, | 
 |                        (current_state.cost - previous_state.cost)); | 
 |       summary->termination_type = FAILURE; | 
 |       LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message; | 
 |       break; | 
 |     } | 
 |  | 
 |     line_search->Search(initial_step_size, | 
 |                         current_state.cost, | 
 |                         current_state.directional_derivative, | 
 |                         &line_search_summary); | 
 |     if (!line_search_summary.success) { | 
 |       summary->message = | 
 |           StringPrintf("Numerical failure in line search, failed to find " | 
 |                        "a valid step size, (did not run out of iterations) " | 
 |                        "using initial_step_size: %.5e, initial_cost: %.5e, " | 
 |                        "initial_gradient: %.5e.", | 
 |                        initial_step_size, current_state.cost, | 
 |                        current_state.directional_derivative); | 
 |       LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message; | 
 |       summary->termination_type = FAILURE; | 
 |       break; | 
 |     } | 
 |  | 
 |     const FunctionSample& optimal_point = line_search_summary.optimal_point; | 
 |     CHECK(optimal_point.vector_x_is_valid) | 
 |         << "Congratulations, you found a bug in Ceres. Please report it."; | 
 |     current_state.step_size = optimal_point.x; | 
 |     previous_state = current_state; | 
 |     iteration_summary.step_solver_time_in_seconds = | 
 |         WallTimeInSeconds() - iteration_start_time; | 
 |  | 
 |     if (optimal_point.vector_gradient_is_valid) { | 
 |       current_state.cost = optimal_point.value; | 
 |       current_state.gradient = optimal_point.vector_gradient; | 
 |     } else { | 
 |       Evaluator::EvaluateOptions evaluate_options; | 
 |       evaluate_options.new_evaluation_point = false; | 
 |       if (!evaluator->Evaluate(evaluate_options, | 
 |                                optimal_point.vector_x.data(), | 
 |                                &(current_state.cost), | 
 |                                NULL, | 
 |                                current_state.gradient.data(), | 
 |                                NULL)) { | 
 |         summary->termination_type = FAILURE; | 
 |         summary->message = "Cost and jacobian evaluation failed."; | 
 |         LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message; | 
 |         return; | 
 |       } | 
 |     } | 
 |  | 
 |     if (!EvaluateGradientNorms(evaluator, | 
 |                                optimal_point.vector_x, | 
 |                                ¤t_state, | 
 |                                &summary->message)) { | 
 |       summary->termination_type = FAILURE; | 
 |       summary->message = | 
 |           "Step failed to evaluate. This should not happen as the step was " | 
 |           "valid when it was selected by the line search. More details: " + | 
 |           summary->message; | 
 |       LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message; | 
 |       break; | 
 |     } | 
 |  | 
 |     // Compute the norm of the step in the ambient space. | 
 |     iteration_summary.step_norm = (optimal_point.vector_x - x).norm(); | 
 |     const double x_norm = x.norm(); | 
 |     x = optimal_point.vector_x; | 
 |  | 
 |     iteration_summary.gradient_max_norm = current_state.gradient_max_norm; | 
 |     iteration_summary.gradient_norm = sqrt(current_state.gradient_squared_norm); | 
 |     iteration_summary.cost_change = previous_state.cost - current_state.cost; | 
 |     iteration_summary.cost = current_state.cost + summary->fixed_cost; | 
 |  | 
 |     iteration_summary.step_is_valid = true; | 
 |     iteration_summary.step_is_successful = true; | 
 |     iteration_summary.step_size =  current_state.step_size; | 
 |     iteration_summary.line_search_function_evaluations = | 
 |         line_search_summary.num_function_evaluations; | 
 |     iteration_summary.line_search_gradient_evaluations = | 
 |         line_search_summary.num_gradient_evaluations; | 
 |     iteration_summary.line_search_iterations = | 
 |         line_search_summary.num_iterations; | 
 |     iteration_summary.iteration_time_in_seconds = | 
 |         WallTimeInSeconds() - iteration_start_time; | 
 |     iteration_summary.cumulative_time_in_seconds = | 
 |         WallTimeInSeconds() - start_time | 
 |         + summary->preprocessor_time_in_seconds; | 
 |     summary->iterations.push_back(iteration_summary); | 
 |  | 
 |     // Iterations inside the line search algorithm are considered | 
 |     // 'steps' in the broader context, to distinguish these inner | 
 |     // iterations from from the outer iterations of the line search | 
 |     // minimizer. The number of line search steps is the total number | 
 |     // of inner line search iterations (or steps) across the entire | 
 |     // minimization. | 
 |     summary->num_line_search_steps +=  line_search_summary.num_iterations; | 
 |     summary->line_search_cost_evaluation_time_in_seconds += | 
 |         line_search_summary.cost_evaluation_time_in_seconds; | 
 |     summary->line_search_gradient_evaluation_time_in_seconds += | 
 |         line_search_summary.gradient_evaluation_time_in_seconds; | 
 |     summary->line_search_polynomial_minimization_time_in_seconds += | 
 |         line_search_summary.polynomial_minimization_time_in_seconds; | 
 |     summary->line_search_total_time_in_seconds += | 
 |         line_search_summary.total_time_in_seconds; | 
 |     ++summary->num_successful_steps; | 
 |  | 
 |     const double step_size_tolerance = options.parameter_tolerance * | 
 |                                        (x_norm + options.parameter_tolerance); | 
 |     if (iteration_summary.step_norm <= step_size_tolerance) { | 
 |       summary->message = | 
 |           StringPrintf("Parameter tolerance reached. " | 
 |                        "Relative step_norm: %e <= %e.", | 
 |                        (iteration_summary.step_norm / | 
 |                         (x_norm + options.parameter_tolerance)), | 
 |                        options.parameter_tolerance); | 
 |       summary->termination_type = CONVERGENCE; | 
 |       VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message; | 
 |       return; | 
 |     } | 
 |  | 
 |     if (iteration_summary.gradient_max_norm <= options.gradient_tolerance) { | 
 |       summary->message = StringPrintf("Gradient tolerance reached. " | 
 |                                       "Gradient max norm: %e <= %e", | 
 |                                       iteration_summary.gradient_max_norm, | 
 |                                       options.gradient_tolerance); | 
 |       summary->termination_type = CONVERGENCE; | 
 |       VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message; | 
 |       break; | 
 |     } | 
 |  | 
 |     const double absolute_function_tolerance = | 
 |         options.function_tolerance * std::abs(previous_state.cost); | 
 |     if (std::abs(iteration_summary.cost_change) <= | 
 |         absolute_function_tolerance) { | 
 |       summary->message = StringPrintf( | 
 |           "Function tolerance reached. " | 
 |           "|cost_change|/cost: %e <= %e", | 
 |           std::abs(iteration_summary.cost_change) / previous_state.cost, | 
 |           options.function_tolerance); | 
 |       summary->termination_type = CONVERGENCE; | 
 |       VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message; | 
 |       break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |