| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2019 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Authors: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "Eigen/Dense" |
| #include "benchmark/benchmark.h" |
| #include "ceres/block_random_access_dense_matrix.h" |
| #include "ceres/block_sparse_matrix.h" |
| #include "ceres/block_structure.h" |
| #include "ceres/random.h" |
| #include "ceres/schur_eliminator.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| constexpr int kRowBlockSize = 2; |
| constexpr int kEBlockSize = 3; |
| constexpr int kFBlockSize = 6; |
| |
| class BenchmarkData { |
| public: |
| explicit BenchmarkData(const int num_e_blocks) { |
| CompressedRowBlockStructure* bs = new CompressedRowBlockStructure; |
| bs->cols.resize(num_e_blocks + 1); |
| int col_pos = 0; |
| for (int i = 0; i < num_e_blocks; ++i) { |
| bs->cols[i].position = col_pos; |
| bs->cols[i].size = kEBlockSize; |
| col_pos += kEBlockSize; |
| } |
| bs->cols.back().position = col_pos; |
| bs->cols.back().size = kFBlockSize; |
| |
| bs->rows.resize(2 * num_e_blocks); |
| int row_pos = 0; |
| int cell_pos = 0; |
| for (int i = 0; i < num_e_blocks; ++i) { |
| { |
| auto& row = bs->rows[2 * i]; |
| row.block.position = row_pos; |
| row.block.size = kRowBlockSize; |
| row_pos += kRowBlockSize; |
| auto& cells = row.cells; |
| cells.resize(2); |
| cells[0].block_id = i; |
| cells[0].position = cell_pos; |
| cell_pos += kRowBlockSize * kEBlockSize; |
| cells[1].block_id = num_e_blocks; |
| cells[1].position = cell_pos; |
| cell_pos += kRowBlockSize * kFBlockSize; |
| } |
| { |
| auto& row = bs->rows[2 * i + 1]; |
| row.block.position = row_pos; |
| row.block.size = kRowBlockSize; |
| row_pos += kRowBlockSize; |
| auto& cells = row.cells; |
| cells.resize(1); |
| cells[0].block_id = i; |
| cells[0].position = cell_pos; |
| cell_pos += kRowBlockSize * kEBlockSize; |
| } |
| } |
| |
| matrix_.reset(new BlockSparseMatrix(bs)); |
| double* values = matrix_->mutable_values(); |
| for (int i = 0; i < matrix_->num_nonzeros(); ++i) { |
| values[i] = RandNormal(); |
| } |
| |
| b_.resize(matrix_->num_rows()); |
| b_.setRandom(); |
| |
| std::vector<int> blocks(1, kFBlockSize); |
| lhs_.reset(new BlockRandomAccessDenseMatrix(blocks)); |
| diagonal_.resize(matrix_->num_cols()); |
| diagonal_.setOnes(); |
| rhs_.resize(kFBlockSize); |
| |
| y_.resize(num_e_blocks * kEBlockSize); |
| y_.setZero(); |
| z_.resize(kFBlockSize); |
| z_.setOnes(); |
| } |
| |
| const BlockSparseMatrix& matrix() const { return *matrix_; } |
| const Vector& b() const { return b_; } |
| const Vector& diagonal() const { return diagonal_; } |
| BlockRandomAccessDenseMatrix* mutable_lhs() { return lhs_.get(); } |
| Vector* mutable_rhs() { return &rhs_; } |
| Vector* mutable_y() { return &y_; } |
| Vector* mutable_z() { return &z_; } |
| |
| private: |
| std::unique_ptr<BlockSparseMatrix> matrix_; |
| Vector b_; |
| std::unique_ptr<BlockRandomAccessDenseMatrix> lhs_; |
| Vector rhs_; |
| Vector diagonal_; |
| Vector z_; |
| Vector y_; |
| }; |
| |
| void BM_SchurEliminatorEliminate(benchmark::State& state) { |
| const int num_e_blocks = state.range(0); |
| BenchmarkData data(num_e_blocks); |
| |
| ContextImpl context; |
| LinearSolver::Options linear_solver_options; |
| linear_solver_options.e_block_size = kEBlockSize; |
| linear_solver_options.row_block_size = kRowBlockSize; |
| linear_solver_options.f_block_size = kFBlockSize; |
| linear_solver_options.context = &context; |
| std::unique_ptr<SchurEliminatorBase> eliminator( |
| SchurEliminatorBase::Create(linear_solver_options)); |
| |
| eliminator->Init(num_e_blocks, true, data.matrix().block_structure()); |
| for (auto _ : state) { |
| eliminator->Eliminate(BlockSparseMatrixData(data.matrix()), |
| data.b().data(), |
| data.diagonal().data(), |
| data.mutable_lhs(), |
| data.mutable_rhs()->data()); |
| } |
| } |
| |
| void BM_SchurEliminatorBackSubstitute(benchmark::State& state) { |
| const int num_e_blocks = state.range(0); |
| BenchmarkData data(num_e_blocks); |
| |
| ContextImpl context; |
| LinearSolver::Options linear_solver_options; |
| linear_solver_options.e_block_size = kEBlockSize; |
| linear_solver_options.row_block_size = kRowBlockSize; |
| linear_solver_options.f_block_size = kFBlockSize; |
| linear_solver_options.context = &context; |
| std::unique_ptr<SchurEliminatorBase> eliminator( |
| SchurEliminatorBase::Create(linear_solver_options)); |
| |
| eliminator->Init(num_e_blocks, true, data.matrix().block_structure()); |
| eliminator->Eliminate(BlockSparseMatrixData(data.matrix()), |
| data.b().data(), |
| data.diagonal().data(), |
| data.mutable_lhs(), |
| data.mutable_rhs()->data()); |
| for (auto _ : state) { |
| eliminator->BackSubstitute(BlockSparseMatrixData(data.matrix()), |
| data.b().data(), |
| data.diagonal().data(), |
| data.mutable_z()->data(), |
| data.mutable_y()->data()); |
| } |
| } |
| |
| void BM_SchurEliminatorForOneFBlockEliminate(benchmark::State& state) { |
| const int num_e_blocks = state.range(0); |
| BenchmarkData data(num_e_blocks); |
| SchurEliminatorForOneFBlock<2, 3, 6> eliminator; |
| eliminator.Init(num_e_blocks, true, data.matrix().block_structure()); |
| for (auto _ : state) { |
| eliminator.Eliminate(BlockSparseMatrixData(data.matrix()), |
| data.b().data(), |
| data.diagonal().data(), |
| data.mutable_lhs(), |
| data.mutable_rhs()->data()); |
| } |
| } |
| |
| void BM_SchurEliminatorForOneFBlockBackSubstitute(benchmark::State& state) { |
| const int num_e_blocks = state.range(0); |
| BenchmarkData data(num_e_blocks); |
| SchurEliminatorForOneFBlock<2, 3, 6> eliminator; |
| eliminator.Init(num_e_blocks, true, data.matrix().block_structure()); |
| eliminator.Eliminate(BlockSparseMatrixData(data.matrix()), |
| data.b().data(), |
| data.diagonal().data(), |
| data.mutable_lhs(), |
| data.mutable_rhs()->data()); |
| for (auto _ : state) { |
| eliminator.BackSubstitute(BlockSparseMatrixData(data.matrix()), |
| data.b().data(), |
| data.diagonal().data(), |
| data.mutable_z()->data(), |
| data.mutable_y()->data()); |
| } |
| } |
| |
| BENCHMARK(BM_SchurEliminatorEliminate)->Range(10, 10000); |
| BENCHMARK(BM_SchurEliminatorForOneFBlockEliminate)->Range(10, 10000); |
| BENCHMARK(BM_SchurEliminatorBackSubstitute)->Range(10, 10000); |
| BENCHMARK(BM_SchurEliminatorForOneFBlockBackSubstitute)->Range(10, 10000); |
| |
| } // namespace internal |
| } // namespace ceres |
| |
| BENCHMARK_MAIN(); |