| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: keir@google.com (Keir Mierle) | 
 |  | 
 | #include "ceres/small_blas.h" | 
 |  | 
 | #include <limits> | 
 | #include "gtest/gtest.h" | 
 | #include "ceres/internal/eigen.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | const double kTolerance = 3.0 * std::numeric_limits<double>::epsilon(); | 
 |  | 
 | TEST(BLAS, MatrixMatrixMultiply) { | 
 |   const int kRowA = 3; | 
 |   const int kColA = 5; | 
 |   Matrix A(kRowA, kColA); | 
 |   A.setOnes(); | 
 |  | 
 |   const int kRowB = 5; | 
 |   const int kColB = 7; | 
 |   Matrix B(kRowB, kColB); | 
 |   B.setOnes(); | 
 |  | 
 |   for (int row_stride_c = kRowA; row_stride_c < 3 * kRowA; ++row_stride_c) { | 
 |     for (int col_stride_c = kColB; col_stride_c < 3 * kColB; ++col_stride_c) { | 
 |       Matrix C(row_stride_c, col_stride_c); | 
 |       C.setOnes(); | 
 |  | 
 |       Matrix C_plus = C; | 
 |       Matrix C_minus = C; | 
 |       Matrix C_assign = C; | 
 |  | 
 |       Matrix C_plus_ref = C; | 
 |       Matrix C_minus_ref = C; | 
 |       Matrix C_assign_ref = C; | 
 |       for (int start_row_c = 0; start_row_c + kRowA < row_stride_c; ++start_row_c) { | 
 |         for (int start_col_c = 0; start_col_c + kColB < col_stride_c; ++start_col_c) { | 
 |           C_plus_ref.block(start_row_c, start_col_c, kRowA, kColB) += | 
 |               A * B; | 
 |  | 
 |           MatrixMatrixMultiply<kRowA, kColA, kRowB, kColB, 1>( | 
 |               A.data(), kRowA, kColA, | 
 |               B.data(), kRowB, kColB, | 
 |               C_plus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); | 
 |  | 
 |           EXPECT_NEAR((C_plus_ref - C_plus).norm(), 0.0, kTolerance) | 
 |               << "C += A * B \n" | 
 |               << "row_stride_c : " << row_stride_c << "\n" | 
 |               << "col_stride_c : " << col_stride_c << "\n" | 
 |               << "start_row_c  : " << start_row_c << "\n" | 
 |               << "start_col_c  : " << start_col_c << "\n" | 
 |               << "Cref : \n" << C_plus_ref << "\n" | 
 |               << "C: \n" << C_plus; | 
 |  | 
 |  | 
 |           C_minus_ref.block(start_row_c, start_col_c, kRowA, kColB) -= | 
 |               A * B; | 
 |  | 
 |           MatrixMatrixMultiply<kRowA, kColA, kRowB, kColB, -1>( | 
 |               A.data(), kRowA, kColA, | 
 |               B.data(), kRowB, kColB, | 
 |               C_minus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); | 
 |  | 
 |            EXPECT_NEAR((C_minus_ref - C_minus).norm(), 0.0, kTolerance) | 
 |               << "C -= A * B \n" | 
 |               << "row_stride_c : " << row_stride_c << "\n" | 
 |               << "col_stride_c : " << col_stride_c << "\n" | 
 |               << "start_row_c  : " << start_row_c << "\n" | 
 |               << "start_col_c  : " << start_col_c << "\n" | 
 |               << "Cref : \n" << C_minus_ref << "\n" | 
 |               << "C: \n" << C_minus; | 
 |  | 
 |           C_assign_ref.block(start_row_c, start_col_c, kRowA, kColB) = | 
 |               A * B; | 
 |  | 
 |           MatrixMatrixMultiply<kRowA, kColA, kRowB, kColB, 0>( | 
 |               A.data(), kRowA, kColA, | 
 |               B.data(), kRowB, kColB, | 
 |               C_assign.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); | 
 |  | 
 |           EXPECT_NEAR((C_assign_ref - C_assign).norm(), 0.0, kTolerance) | 
 |               << "C = A * B \n" | 
 |               << "row_stride_c : " << row_stride_c << "\n" | 
 |               << "col_stride_c : " << col_stride_c << "\n" | 
 |               << "start_row_c  : " << start_row_c << "\n" | 
 |               << "start_col_c  : " << start_col_c << "\n" | 
 |               << "Cref : \n" << C_assign_ref << "\n" | 
 |               << "C: \n" << C_assign; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | TEST(BLAS, MatrixTransposeMatrixMultiply) { | 
 |   const int kRowA = 5; | 
 |   const int kColA = 3; | 
 |   Matrix A(kRowA, kColA); | 
 |   A.setOnes(); | 
 |  | 
 |   const int kRowB = 5; | 
 |   const int kColB = 7; | 
 |   Matrix B(kRowB, kColB); | 
 |   B.setOnes(); | 
 |  | 
 |   for (int row_stride_c = kColA; row_stride_c < 3 * kColA; ++row_stride_c) { | 
 |     for (int col_stride_c = kColB; col_stride_c <  3 * kColB; ++col_stride_c) { | 
 |       Matrix C(row_stride_c, col_stride_c); | 
 |       C.setOnes(); | 
 |  | 
 |       Matrix C_plus = C; | 
 |       Matrix C_minus = C; | 
 |       Matrix C_assign = C; | 
 |  | 
 |       Matrix C_plus_ref = C; | 
 |       Matrix C_minus_ref = C; | 
 |       Matrix C_assign_ref = C; | 
 |       for (int start_row_c = 0; start_row_c + kColA < row_stride_c; ++start_row_c) { | 
 |         for (int start_col_c = 0; start_col_c + kColB < col_stride_c; ++start_col_c) { | 
 |           C_plus_ref.block(start_row_c, start_col_c, kColA, kColB) += | 
 |               A.transpose() * B; | 
 |  | 
 |           MatrixTransposeMatrixMultiply<kRowA, kColA, kRowB, kColB, 1>( | 
 |               A.data(), kRowA, kColA, | 
 |               B.data(), kRowB, kColB, | 
 |               C_plus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); | 
 |  | 
 |           EXPECT_NEAR((C_plus_ref - C_plus).norm(), 0.0, kTolerance) | 
 |               << "C += A' * B \n" | 
 |               << "row_stride_c : " << row_stride_c << "\n" | 
 |               << "col_stride_c : " << col_stride_c << "\n" | 
 |               << "start_row_c  : " << start_row_c << "\n" | 
 |               << "start_col_c  : " << start_col_c << "\n" | 
 |               << "Cref : \n" << C_plus_ref << "\n" | 
 |               << "C: \n" << C_plus; | 
 |  | 
 |           C_minus_ref.block(start_row_c, start_col_c, kColA, kColB) -= | 
 |               A.transpose() * B; | 
 |  | 
 |           MatrixTransposeMatrixMultiply<kRowA, kColA, kRowB, kColB, -1>( | 
 |               A.data(), kRowA, kColA, | 
 |               B.data(), kRowB, kColB, | 
 |               C_minus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); | 
 |  | 
 |           EXPECT_NEAR((C_minus_ref - C_minus).norm(), 0.0, kTolerance) | 
 |               << "C -= A' * B \n" | 
 |               << "row_stride_c : " << row_stride_c << "\n" | 
 |               << "col_stride_c : " << col_stride_c << "\n" | 
 |               << "start_row_c  : " << start_row_c << "\n" | 
 |               << "start_col_c  : " << start_col_c << "\n" | 
 |               << "Cref : \n" << C_minus_ref << "\n" | 
 |               << "C: \n" << C_minus; | 
 |  | 
 |           C_assign_ref.block(start_row_c, start_col_c, kColA, kColB) = | 
 |               A.transpose() * B; | 
 |  | 
 |           MatrixTransposeMatrixMultiply<kRowA, kColA, kRowB, kColB, 0>( | 
 |               A.data(), kRowA, kColA, | 
 |               B.data(), kRowB, kColB, | 
 |               C_assign.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); | 
 |  | 
 |           EXPECT_NEAR((C_assign_ref - C_assign).norm(), 0.0, kTolerance) | 
 |               << "C = A' * B \n" | 
 |               << "row_stride_c : " << row_stride_c << "\n" | 
 |               << "col_stride_c : " << col_stride_c << "\n" | 
 |               << "start_row_c  : " << start_row_c << "\n" | 
 |               << "start_col_c  : " << start_col_c << "\n" | 
 |               << "Cref : \n" << C_assign_ref << "\n" | 
 |               << "C: \n" << C_assign; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // TODO(sameeragarwal): Dedup and reduce the amount of duplication of | 
 | // test code in this file. | 
 |  | 
 | TEST(BLAS, MatrixMatrixMultiplyNaive) { | 
 |   const int kRowA = 3; | 
 |   const int kColA = 5; | 
 |   Matrix A(kRowA, kColA); | 
 |   A.setOnes(); | 
 |  | 
 |   const int kRowB = 5; | 
 |   const int kColB = 7; | 
 |   Matrix B(kRowB, kColB); | 
 |   B.setOnes(); | 
 |  | 
 |   for (int row_stride_c = kRowA; row_stride_c < 3 * kRowA; ++row_stride_c) { | 
 |     for (int col_stride_c = kColB; col_stride_c < 3 * kColB; ++col_stride_c) { | 
 |       Matrix C(row_stride_c, col_stride_c); | 
 |       C.setOnes(); | 
 |  | 
 |       Matrix C_plus = C; | 
 |       Matrix C_minus = C; | 
 |       Matrix C_assign = C; | 
 |  | 
 |       Matrix C_plus_ref = C; | 
 |       Matrix C_minus_ref = C; | 
 |       Matrix C_assign_ref = C; | 
 |       for (int start_row_c = 0; start_row_c + kRowA < row_stride_c; ++start_row_c) { | 
 |         for (int start_col_c = 0; start_col_c + kColB < col_stride_c; ++start_col_c) { | 
 |           C_plus_ref.block(start_row_c, start_col_c, kRowA, kColB) += | 
 |               A * B; | 
 |  | 
 |           MatrixMatrixMultiplyNaive<kRowA, kColA, kRowB, kColB, 1>( | 
 |               A.data(), kRowA, kColA, | 
 |               B.data(), kRowB, kColB, | 
 |               C_plus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); | 
 |  | 
 |           EXPECT_NEAR((C_plus_ref - C_plus).norm(), 0.0, kTolerance) | 
 |               << "C += A * B \n" | 
 |               << "row_stride_c : " << row_stride_c << "\n" | 
 |               << "col_stride_c : " << col_stride_c << "\n" | 
 |               << "start_row_c  : " << start_row_c << "\n" | 
 |               << "start_col_c  : " << start_col_c << "\n" | 
 |               << "Cref : \n" << C_plus_ref << "\n" | 
 |               << "C: \n" << C_plus; | 
 |  | 
 |  | 
 |           C_minus_ref.block(start_row_c, start_col_c, kRowA, kColB) -= | 
 |               A * B; | 
 |  | 
 |           MatrixMatrixMultiplyNaive<kRowA, kColA, kRowB, kColB, -1>( | 
 |               A.data(), kRowA, kColA, | 
 |               B.data(), kRowB, kColB, | 
 |               C_minus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); | 
 |  | 
 |            EXPECT_NEAR((C_minus_ref - C_minus).norm(), 0.0, kTolerance) | 
 |               << "C -= A * B \n" | 
 |               << "row_stride_c : " << row_stride_c << "\n" | 
 |               << "col_stride_c : " << col_stride_c << "\n" | 
 |               << "start_row_c  : " << start_row_c << "\n" | 
 |               << "start_col_c  : " << start_col_c << "\n" | 
 |               << "Cref : \n" << C_minus_ref << "\n" | 
 |               << "C: \n" << C_minus; | 
 |  | 
 |           C_assign_ref.block(start_row_c, start_col_c, kRowA, kColB) = | 
 |               A * B; | 
 |  | 
 |           MatrixMatrixMultiplyNaive<kRowA, kColA, kRowB, kColB, 0>( | 
 |               A.data(), kRowA, kColA, | 
 |               B.data(), kRowB, kColB, | 
 |               C_assign.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); | 
 |  | 
 |           EXPECT_NEAR((C_assign_ref - C_assign).norm(), 0.0, kTolerance) | 
 |               << "C = A * B \n" | 
 |               << "row_stride_c : " << row_stride_c << "\n" | 
 |               << "col_stride_c : " << col_stride_c << "\n" | 
 |               << "start_row_c  : " << start_row_c << "\n" | 
 |               << "start_col_c  : " << start_col_c << "\n" | 
 |               << "Cref : \n" << C_assign_ref << "\n" | 
 |               << "C: \n" << C_assign; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | TEST(BLAS, MatrixTransposeMatrixMultiplyNaive) { | 
 |   const int kRowA = 5; | 
 |   const int kColA = 3; | 
 |   Matrix A(kRowA, kColA); | 
 |   A.setOnes(); | 
 |  | 
 |   const int kRowB = 5; | 
 |   const int kColB = 7; | 
 |   Matrix B(kRowB, kColB); | 
 |   B.setOnes(); | 
 |  | 
 |   for (int row_stride_c = kColA; row_stride_c < 3 * kColA; ++row_stride_c) { | 
 |     for (int col_stride_c = kColB; col_stride_c <  3 * kColB; ++col_stride_c) { | 
 |       Matrix C(row_stride_c, col_stride_c); | 
 |       C.setOnes(); | 
 |  | 
 |       Matrix C_plus = C; | 
 |       Matrix C_minus = C; | 
 |       Matrix C_assign = C; | 
 |  | 
 |       Matrix C_plus_ref = C; | 
 |       Matrix C_minus_ref = C; | 
 |       Matrix C_assign_ref = C; | 
 |       for (int start_row_c = 0; start_row_c + kColA < row_stride_c; ++start_row_c) { | 
 |         for (int start_col_c = 0; start_col_c + kColB < col_stride_c; ++start_col_c) { | 
 |           C_plus_ref.block(start_row_c, start_col_c, kColA, kColB) += | 
 |               A.transpose() * B; | 
 |  | 
 |           MatrixTransposeMatrixMultiplyNaive<kRowA, kColA, kRowB, kColB, 1>( | 
 |               A.data(), kRowA, kColA, | 
 |               B.data(), kRowB, kColB, | 
 |               C_plus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); | 
 |  | 
 |           EXPECT_NEAR((C_plus_ref - C_plus).norm(), 0.0, kTolerance) | 
 |               << "C += A' * B \n" | 
 |               << "row_stride_c : " << row_stride_c << "\n" | 
 |               << "col_stride_c : " << col_stride_c << "\n" | 
 |               << "start_row_c  : " << start_row_c << "\n" | 
 |               << "start_col_c  : " << start_col_c << "\n" | 
 |               << "Cref : \n" << C_plus_ref << "\n" | 
 |               << "C: \n" << C_plus; | 
 |  | 
 |           C_minus_ref.block(start_row_c, start_col_c, kColA, kColB) -= | 
 |               A.transpose() * B; | 
 |  | 
 |           MatrixTransposeMatrixMultiplyNaive<kRowA, kColA, kRowB, kColB, -1>( | 
 |               A.data(), kRowA, kColA, | 
 |               B.data(), kRowB, kColB, | 
 |               C_minus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); | 
 |  | 
 |           EXPECT_NEAR((C_minus_ref - C_minus).norm(), 0.0, kTolerance) | 
 |               << "C -= A' * B \n" | 
 |               << "row_stride_c : " << row_stride_c << "\n" | 
 |               << "col_stride_c : " << col_stride_c << "\n" | 
 |               << "start_row_c  : " << start_row_c << "\n" | 
 |               << "start_col_c  : " << start_col_c << "\n" | 
 |               << "Cref : \n" << C_minus_ref << "\n" | 
 |               << "C: \n" << C_minus; | 
 |  | 
 |           C_assign_ref.block(start_row_c, start_col_c, kColA, kColB) = | 
 |               A.transpose() * B; | 
 |  | 
 |           MatrixTransposeMatrixMultiplyNaive<kRowA, kColA, kRowB, kColB, 0>( | 
 |               A.data(), kRowA, kColA, | 
 |               B.data(), kRowB, kColB, | 
 |               C_assign.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); | 
 |  | 
 |           EXPECT_NEAR((C_assign_ref - C_assign).norm(), 0.0, kTolerance) | 
 |               << "C = A' * B \n" | 
 |               << "row_stride_c : " << row_stride_c << "\n" | 
 |               << "col_stride_c : " << col_stride_c << "\n" | 
 |               << "start_row_c  : " << start_row_c << "\n" | 
 |               << "start_col_c  : " << start_col_c << "\n" | 
 |               << "Cref : \n" << C_assign_ref << "\n" | 
 |               << "C: \n" << C_assign; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | TEST(BLAS, MatrixVectorMultiply) { | 
 |   for (int num_rows_a = 1; num_rows_a < 10; ++num_rows_a) { | 
 |     for (int num_cols_a = 1; num_cols_a < 10; ++num_cols_a) { | 
 |       Matrix A(num_rows_a, num_cols_a); | 
 |       A.setOnes(); | 
 |  | 
 |       Vector b(num_cols_a); | 
 |       b.setOnes(); | 
 |  | 
 |       Vector c(num_rows_a); | 
 |       c.setOnes(); | 
 |  | 
 |       Vector c_plus = c; | 
 |       Vector c_minus = c; | 
 |       Vector c_assign = c; | 
 |  | 
 |       Vector c_plus_ref = c; | 
 |       Vector c_minus_ref = c; | 
 |       Vector c_assign_ref = c; | 
 |  | 
 |       c_plus_ref += A * b; | 
 |       MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>( | 
 |           A.data(), num_rows_a, num_cols_a, | 
 |           b.data(), | 
 |           c_plus.data()); | 
 |       EXPECT_NEAR((c_plus_ref - c_plus).norm(), 0.0, kTolerance) | 
 |           << "c += A * b \n" | 
 |           << "c_ref : \n" << c_plus_ref << "\n" | 
 |           << "c: \n" << c_plus; | 
 |  | 
 |       c_minus_ref -= A * b; | 
 |       MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, -1>( | 
 |           A.data(), num_rows_a, num_cols_a, | 
 |           b.data(), | 
 |           c_minus.data()); | 
 |       EXPECT_NEAR((c_minus_ref - c_minus).norm(), 0.0, kTolerance) | 
 |           << "c += A * b \n" | 
 |           << "c_ref : \n" << c_minus_ref << "\n" | 
 |           << "c: \n" << c_minus; | 
 |  | 
 |       c_assign_ref = A * b; | 
 |       MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 0>( | 
 |           A.data(), num_rows_a, num_cols_a, | 
 |           b.data(), | 
 |           c_assign.data()); | 
 |       EXPECT_NEAR((c_assign_ref - c_assign).norm(), 0.0, kTolerance) | 
 |           << "c += A * b \n" | 
 |           << "c_ref : \n" << c_assign_ref << "\n" | 
 |           << "c: \n" << c_assign; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | TEST(BLAS, MatrixTransposeVectorMultiply) { | 
 |   for (int num_rows_a = 1; num_rows_a < 10; ++num_rows_a) { | 
 |     for (int num_cols_a = 1; num_cols_a < 10; ++num_cols_a) { | 
 |       Matrix A(num_rows_a, num_cols_a); | 
 |       A.setRandom(); | 
 |  | 
 |       Vector b(num_rows_a); | 
 |       b.setRandom(); | 
 |  | 
 |       Vector c(num_cols_a); | 
 |       c.setOnes(); | 
 |  | 
 |       Vector c_plus = c; | 
 |       Vector c_minus = c; | 
 |       Vector c_assign = c; | 
 |  | 
 |       Vector c_plus_ref = c; | 
 |       Vector c_minus_ref = c; | 
 |       Vector c_assign_ref = c; | 
 |  | 
 |       c_plus_ref += A.transpose() * b; | 
 |       MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>( | 
 |           A.data(), num_rows_a, num_cols_a, | 
 |           b.data(), | 
 |           c_plus.data()); | 
 |       EXPECT_NEAR((c_plus_ref - c_plus).norm(), 0.0, kTolerance) | 
 |           << "c += A' * b \n" | 
 |           << "c_ref : \n" << c_plus_ref << "\n" | 
 |           << "c: \n" << c_plus; | 
 |  | 
 |       c_minus_ref -= A.transpose() * b; | 
 |       MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, -1>( | 
 |           A.data(), num_rows_a, num_cols_a, | 
 |           b.data(), | 
 |           c_minus.data()); | 
 |       EXPECT_NEAR((c_minus_ref - c_minus).norm(), 0.0, kTolerance) | 
 |           << "c += A' * b \n" | 
 |           << "c_ref : \n" << c_minus_ref << "\n" | 
 |           << "c: \n" << c_minus; | 
 |  | 
 |       c_assign_ref = A.transpose() * b; | 
 |       MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 0>( | 
 |           A.data(), num_rows_a, num_cols_a, | 
 |           b.data(), | 
 |           c_assign.data()); | 
 |       EXPECT_NEAR((c_assign_ref - c_assign).norm(), 0.0, kTolerance) | 
 |           << "c += A' * b \n" | 
 |           << "c_ref : \n" << c_assign_ref << "\n" | 
 |           << "c: \n" << c_assign; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |