| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/visibility_based_preconditioner.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <functional> | 
 | #include <iterator> | 
 | #include <memory> | 
 | #include <set> | 
 | #include <utility> | 
 | #include <vector> | 
 |  | 
 | #include "Eigen/Dense" | 
 | #include "ceres/block_random_access_sparse_matrix.h" | 
 | #include "ceres/block_sparse_matrix.h" | 
 | #include "ceres/canonical_views_clustering.h" | 
 | #include "ceres/graph.h" | 
 | #include "ceres/graph_algorithms.h" | 
 | #include "ceres/linear_solver.h" | 
 | #include "ceres/schur_eliminator.h" | 
 | #include "ceres/single_linkage_clustering.h" | 
 | #include "ceres/visibility.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | using std::make_pair; | 
 | using std::pair; | 
 | using std::set; | 
 | using std::swap; | 
 | using std::vector; | 
 |  | 
 | // TODO(sameeragarwal): Currently these are magic weights for the | 
 | // preconditioner construction. Move these higher up into the Options | 
 | // struct and provide some guidelines for choosing them. | 
 | // | 
 | // This will require some more work on the clustering algorithm and | 
 | // possibly some more refactoring of the code. | 
 | static const double kCanonicalViewsSizePenaltyWeight = 3.0; | 
 | static const double kCanonicalViewsSimilarityPenaltyWeight = 0.0; | 
 | static const double kSingleLinkageMinSimilarity = 0.9; | 
 |  | 
 | VisibilityBasedPreconditioner::VisibilityBasedPreconditioner( | 
 |     const CompressedRowBlockStructure& bs, | 
 |     const Preconditioner::Options& options) | 
 |     : options_(options), num_blocks_(0), num_clusters_(0) { | 
 |   CHECK_GT(options_.elimination_groups.size(), 1); | 
 |   CHECK_GT(options_.elimination_groups[0], 0); | 
 |   CHECK(options_.type == CLUSTER_JACOBI || options_.type == CLUSTER_TRIDIAGONAL) | 
 |       << "Unknown preconditioner type: " << options_.type; | 
 |   num_blocks_ = bs.cols.size() - options_.elimination_groups[0]; | 
 |   CHECK_GT(num_blocks_, 0) << "Jacobian should have at least 1 f_block for " | 
 |                            << "visibility based preconditioning."; | 
 |   CHECK(options_.context != NULL); | 
 |  | 
 |   // Vector of camera block sizes | 
 |   block_size_.resize(num_blocks_); | 
 |   for (int i = 0; i < num_blocks_; ++i) { | 
 |     block_size_[i] = bs.cols[i + options_.elimination_groups[0]].size; | 
 |   } | 
 |  | 
 |   const time_t start_time = time(NULL); | 
 |   switch (options_.type) { | 
 |     case CLUSTER_JACOBI: | 
 |       ComputeClusterJacobiSparsity(bs); | 
 |       break; | 
 |     case CLUSTER_TRIDIAGONAL: | 
 |       ComputeClusterTridiagonalSparsity(bs); | 
 |       break; | 
 |     default: | 
 |       LOG(FATAL) << "Unknown preconditioner type"; | 
 |   } | 
 |   const time_t structure_time = time(NULL); | 
 |   InitStorage(bs); | 
 |   const time_t storage_time = time(NULL); | 
 |   InitEliminator(bs); | 
 |   const time_t eliminator_time = time(NULL); | 
 |  | 
 |   LinearSolver::Options sparse_cholesky_options; | 
 |   sparse_cholesky_options.sparse_linear_algebra_library_type = | 
 |       options_.sparse_linear_algebra_library_type; | 
 |  | 
 |   // The preconditioner's sparsity is not available in the | 
 |   // preprocessor, so the columns of the Jacobian have not been | 
 |   // reordered to minimize fill in when computing its sparse Cholesky | 
 |   // factorization. So we must tell the SparseCholesky object to | 
 |   // perform approximate minimum-degree reordering, which is done by | 
 |   // setting use_postordering to true. | 
 |   sparse_cholesky_options.use_postordering = true; | 
 |   sparse_cholesky_ = SparseCholesky::Create(sparse_cholesky_options); | 
 |  | 
 |   const time_t init_time = time(NULL); | 
 |   VLOG(2) << "init time: " << init_time - start_time | 
 |           << " structure time: " << structure_time - start_time | 
 |           << " storage time:" << storage_time - structure_time | 
 |           << " eliminator time: " << eliminator_time - storage_time; | 
 | } | 
 |  | 
 | VisibilityBasedPreconditioner::~VisibilityBasedPreconditioner() {} | 
 |  | 
 | // Determine the sparsity structure of the CLUSTER_JACOBI | 
 | // preconditioner. It clusters cameras using their scene | 
 | // visibility. The clusters form the diagonal blocks of the | 
 | // preconditioner matrix. | 
 | void VisibilityBasedPreconditioner::ComputeClusterJacobiSparsity( | 
 |     const CompressedRowBlockStructure& bs) { | 
 |   vector<set<int>> visibility; | 
 |   ComputeVisibility(bs, options_.elimination_groups[0], &visibility); | 
 |   CHECK_EQ(num_blocks_, visibility.size()); | 
 |   ClusterCameras(visibility); | 
 |   cluster_pairs_.clear(); | 
 |   for (int i = 0; i < num_clusters_; ++i) { | 
 |     cluster_pairs_.insert(make_pair(i, i)); | 
 |   } | 
 | } | 
 |  | 
 | // Determine the sparsity structure of the CLUSTER_TRIDIAGONAL | 
 | // preconditioner. It clusters cameras using using the scene | 
 | // visibility and then finds the strongly interacting pairs of | 
 | // clusters by constructing another graph with the clusters as | 
 | // vertices and approximating it with a degree-2 maximum spanning | 
 | // forest. The set of edges in this forest are the cluster pairs. | 
 | void VisibilityBasedPreconditioner::ComputeClusterTridiagonalSparsity( | 
 |     const CompressedRowBlockStructure& bs) { | 
 |   vector<set<int>> visibility; | 
 |   ComputeVisibility(bs, options_.elimination_groups[0], &visibility); | 
 |   CHECK_EQ(num_blocks_, visibility.size()); | 
 |   ClusterCameras(visibility); | 
 |  | 
 |   // Construct a weighted graph on the set of clusters, where the | 
 |   // edges are the number of 3D points/e_blocks visible in both the | 
 |   // clusters at the ends of the edge. Return an approximate degree-2 | 
 |   // maximum spanning forest of this graph. | 
 |   vector<set<int>> cluster_visibility; | 
 |   ComputeClusterVisibility(visibility, &cluster_visibility); | 
 |   std::unique_ptr<WeightedGraph<int>> cluster_graph( | 
 |       CreateClusterGraph(cluster_visibility)); | 
 |   CHECK(cluster_graph != nullptr); | 
 |   std::unique_ptr<WeightedGraph<int>> forest( | 
 |       Degree2MaximumSpanningForest(*cluster_graph)); | 
 |   CHECK(forest != nullptr); | 
 |   ForestToClusterPairs(*forest, &cluster_pairs_); | 
 | } | 
 |  | 
 | // Allocate storage for the preconditioner matrix. | 
 | void VisibilityBasedPreconditioner::InitStorage( | 
 |     const CompressedRowBlockStructure& bs) { | 
 |   ComputeBlockPairsInPreconditioner(bs); | 
 |   m_.reset(new BlockRandomAccessSparseMatrix(block_size_, block_pairs_)); | 
 | } | 
 |  | 
 | // Call the canonical views algorithm and cluster the cameras based on | 
 | // their visibility sets. The visibility set of a camera is the set of | 
 | // e_blocks/3D points in the scene that are seen by it. | 
 | // | 
 | // The cluster_membership_ vector is updated to indicate cluster | 
 | // memberships for each camera block. | 
 | void VisibilityBasedPreconditioner::ClusterCameras( | 
 |     const vector<set<int>>& visibility) { | 
 |   std::unique_ptr<WeightedGraph<int>> schur_complement_graph( | 
 |       CreateSchurComplementGraph(visibility)); | 
 |   CHECK(schur_complement_graph != nullptr); | 
 |  | 
 |   std::unordered_map<int, int> membership; | 
 |  | 
 |   if (options_.visibility_clustering_type == CANONICAL_VIEWS) { | 
 |     vector<int> centers; | 
 |     CanonicalViewsClusteringOptions clustering_options; | 
 |     clustering_options.size_penalty_weight = kCanonicalViewsSizePenaltyWeight; | 
 |     clustering_options.similarity_penalty_weight = | 
 |         kCanonicalViewsSimilarityPenaltyWeight; | 
 |     ComputeCanonicalViewsClustering( | 
 |         clustering_options, *schur_complement_graph, ¢ers, &membership); | 
 |     num_clusters_ = centers.size(); | 
 |   } else if (options_.visibility_clustering_type == SINGLE_LINKAGE) { | 
 |     SingleLinkageClusteringOptions clustering_options; | 
 |     clustering_options.min_similarity = kSingleLinkageMinSimilarity; | 
 |     num_clusters_ = ComputeSingleLinkageClustering( | 
 |         clustering_options, *schur_complement_graph, &membership); | 
 |   } else { | 
 |     LOG(FATAL) << "Unknown visibility clustering algorithm."; | 
 |   } | 
 |  | 
 |   CHECK_GT(num_clusters_, 0); | 
 |   VLOG(2) << "num_clusters: " << num_clusters_; | 
 |   FlattenMembershipMap(membership, &cluster_membership_); | 
 | } | 
 |  | 
 | // Compute the block sparsity structure of the Schur complement | 
 | // matrix. For each pair of cameras contributing a non-zero cell to | 
 | // the schur complement, determine if that cell is present in the | 
 | // preconditioner or not. | 
 | // | 
 | // A pair of cameras contribute a cell to the preconditioner if they | 
 | // are part of the same cluster or if the two clusters that they | 
 | // belong have an edge connecting them in the degree-2 maximum | 
 | // spanning forest. | 
 | // | 
 | // For example, a camera pair (i,j) where i belongs to cluster1 and | 
 | // j belongs to cluster2 (assume that cluster1 < cluster2). | 
 | // | 
 | // The cell corresponding to (i,j) is present in the preconditioner | 
 | // if cluster1 == cluster2 or the pair (cluster1, cluster2) were | 
 | // connected by an edge in the degree-2 maximum spanning forest. | 
 | // | 
 | // Since we have already expanded the forest into a set of camera | 
 | // pairs/edges, including self edges, the check can be reduced to | 
 | // checking membership of (cluster1, cluster2) in cluster_pairs_. | 
 | void VisibilityBasedPreconditioner::ComputeBlockPairsInPreconditioner( | 
 |     const CompressedRowBlockStructure& bs) { | 
 |   block_pairs_.clear(); | 
 |   for (int i = 0; i < num_blocks_; ++i) { | 
 |     block_pairs_.insert(make_pair(i, i)); | 
 |   } | 
 |  | 
 |   int r = 0; | 
 |   const int num_row_blocks = bs.rows.size(); | 
 |   const int num_eliminate_blocks = options_.elimination_groups[0]; | 
 |  | 
 |   // Iterate over each row of the matrix. The block structure of the | 
 |   // matrix is assumed to be sorted in order of the e_blocks/point | 
 |   // blocks. Thus all row blocks containing an e_block/point occur | 
 |   // contiguously. Further, if present, an e_block is always the first | 
 |   // parameter block in each row block.  These structural assumptions | 
 |   // are common to all Schur complement based solvers in Ceres. | 
 |   // | 
 |   // For each e_block/point block we identify the set of cameras | 
 |   // seeing it. The cross product of this set with itself is the set | 
 |   // of non-zero cells contributed by this e_block. | 
 |   // | 
 |   // The time complexity of this is O(nm^2) where, n is the number of | 
 |   // 3d points and m is the maximum number of cameras seeing any | 
 |   // point, which for most scenes is a fairly small number. | 
 |   while (r < num_row_blocks) { | 
 |     int e_block_id = bs.rows[r].cells.front().block_id; | 
 |     if (e_block_id >= num_eliminate_blocks) { | 
 |       // Skip the rows whose first block is an f_block. | 
 |       break; | 
 |     } | 
 |  | 
 |     set<int> f_blocks; | 
 |     for (; r < num_row_blocks; ++r) { | 
 |       const CompressedRow& row = bs.rows[r]; | 
 |       if (row.cells.front().block_id != e_block_id) { | 
 |         break; | 
 |       } | 
 |  | 
 |       // Iterate over the blocks in the row, ignoring the first block | 
 |       // since it is the one to be eliminated and adding the rest to | 
 |       // the list of f_blocks associated with this e_block. | 
 |       for (int c = 1; c < row.cells.size(); ++c) { | 
 |         const Cell& cell = row.cells[c]; | 
 |         const int f_block_id = cell.block_id - num_eliminate_blocks; | 
 |         CHECK_GE(f_block_id, 0); | 
 |         f_blocks.insert(f_block_id); | 
 |       } | 
 |     } | 
 |  | 
 |     for (set<int>::const_iterator block1 = f_blocks.begin(); | 
 |          block1 != f_blocks.end(); | 
 |          ++block1) { | 
 |       set<int>::const_iterator block2 = block1; | 
 |       ++block2; | 
 |       for (; block2 != f_blocks.end(); ++block2) { | 
 |         if (IsBlockPairInPreconditioner(*block1, *block2)) { | 
 |           block_pairs_.insert(make_pair(*block1, *block2)); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // The remaining rows which do not contain any e_blocks. | 
 |   for (; r < num_row_blocks; ++r) { | 
 |     const CompressedRow& row = bs.rows[r]; | 
 |     CHECK_GE(row.cells.front().block_id, num_eliminate_blocks); | 
 |     for (int i = 0; i < row.cells.size(); ++i) { | 
 |       const int block1 = row.cells[i].block_id - num_eliminate_blocks; | 
 |       for (int j = 0; j < row.cells.size(); ++j) { | 
 |         const int block2 = row.cells[j].block_id - num_eliminate_blocks; | 
 |         if (block1 <= block2) { | 
 |           if (IsBlockPairInPreconditioner(block1, block2)) { | 
 |             block_pairs_.insert(make_pair(block1, block2)); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   VLOG(1) << "Block pair stats: " << block_pairs_.size(); | 
 | } | 
 |  | 
 | // Initialize the SchurEliminator. | 
 | void VisibilityBasedPreconditioner::InitEliminator( | 
 |     const CompressedRowBlockStructure& bs) { | 
 |   LinearSolver::Options eliminator_options; | 
 |   eliminator_options.elimination_groups = options_.elimination_groups; | 
 |   eliminator_options.num_threads = options_.num_threads; | 
 |   eliminator_options.e_block_size = options_.e_block_size; | 
 |   eliminator_options.f_block_size = options_.f_block_size; | 
 |   eliminator_options.row_block_size = options_.row_block_size; | 
 |   eliminator_options.context = options_.context; | 
 |   eliminator_.reset(SchurEliminatorBase::Create(eliminator_options)); | 
 |   const bool kFullRankETE = true; | 
 |   eliminator_->Init( | 
 |       eliminator_options.elimination_groups[0], kFullRankETE, &bs); | 
 | } | 
 |  | 
 | // Update the values of the preconditioner matrix and factorize it. | 
 | bool VisibilityBasedPreconditioner::UpdateImpl(const BlockSparseMatrix& A, | 
 |                                                const double* D) { | 
 |   const time_t start_time = time(NULL); | 
 |   const int num_rows = m_->num_rows(); | 
 |   CHECK_GT(num_rows, 0); | 
 |  | 
 |   // Compute a subset of the entries of the Schur complement. | 
 |   eliminator_->Eliminate( | 
 |       BlockSparseMatrixData(A), nullptr, D, m_.get(), nullptr); | 
 |  | 
 |   // Try factorizing the matrix. For CLUSTER_JACOBI, this should | 
 |   // always succeed modulo some numerical/conditioning problems. For | 
 |   // CLUSTER_TRIDIAGONAL, in general the preconditioner matrix as | 
 |   // constructed is not positive definite. However, we will go ahead | 
 |   // and try factorizing it. If it works, great, otherwise we scale | 
 |   // all the cells in the preconditioner corresponding to the edges in | 
 |   // the degree-2 forest and that guarantees positive | 
 |   // definiteness. The proof of this fact can be found in Lemma 1 in | 
 |   // "Visibility Based Preconditioning for Bundle Adjustment". | 
 |   // | 
 |   // Doing the factorization like this saves us matrix mass when | 
 |   // scaling is not needed, which is quite often in our experience. | 
 |   LinearSolverTerminationType status = Factorize(); | 
 |  | 
 |   if (status == LINEAR_SOLVER_FATAL_ERROR) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // The scaling only affects the tri-diagonal case, since | 
 |   // ScaleOffDiagonalBlocks only pays attention to the cells that | 
 |   // belong to the edges of the degree-2 forest. In the CLUSTER_JACOBI | 
 |   // case, the preconditioner is guaranteed to be positive | 
 |   // semidefinite. | 
 |   if (status == LINEAR_SOLVER_FAILURE && options_.type == CLUSTER_TRIDIAGONAL) { | 
 |     VLOG(1) << "Unscaled factorization failed. Retrying with off-diagonal " | 
 |             << "scaling"; | 
 |     ScaleOffDiagonalCells(); | 
 |     status = Factorize(); | 
 |   } | 
 |  | 
 |   VLOG(2) << "Compute time: " << time(NULL) - start_time; | 
 |   return (status == LINEAR_SOLVER_SUCCESS); | 
 | } | 
 |  | 
 | // Consider the preconditioner matrix as meta-block matrix, whose | 
 | // blocks correspond to the clusters. Then cluster pairs corresponding | 
 | // to edges in the degree-2 forest are off diagonal entries of this | 
 | // matrix. Scaling these off-diagonal entries by 1/2 forces this | 
 | // matrix to be positive definite. | 
 | void VisibilityBasedPreconditioner::ScaleOffDiagonalCells() { | 
 |   for (const auto& block_pair : block_pairs_) { | 
 |     const int block1 = block_pair.first; | 
 |     const int block2 = block_pair.second; | 
 |     if (!IsBlockPairOffDiagonal(block1, block2)) { | 
 |       continue; | 
 |     } | 
 |  | 
 |     int r, c, row_stride, col_stride; | 
 |     CellInfo* cell_info = | 
 |         m_->GetCell(block1, block2, &r, &c, &row_stride, &col_stride); | 
 |     CHECK(cell_info != NULL) | 
 |         << "Cell missing for block pair (" << block1 << "," << block2 << ")" | 
 |         << " cluster pair (" << cluster_membership_[block1] << " " | 
 |         << cluster_membership_[block2] << ")"; | 
 |  | 
 |     // Ah the magic of tri-diagonal matrices and diagonal | 
 |     // dominance. See Lemma 1 in "Visibility Based Preconditioning | 
 |     // For Bundle Adjustment". | 
 |     MatrixRef m(cell_info->values, row_stride, col_stride); | 
 |     m.block(r, c, block_size_[block1], block_size_[block2]) *= 0.5; | 
 |   } | 
 | } | 
 |  | 
 | // Compute the sparse Cholesky factorization of the preconditioner | 
 | // matrix. | 
 | LinearSolverTerminationType VisibilityBasedPreconditioner::Factorize() { | 
 |   // Extract the TripletSparseMatrix that is used for actually storing | 
 |   // S and convert it into a CompressedRowSparseMatrix. | 
 |   const TripletSparseMatrix* tsm = | 
 |       down_cast<BlockRandomAccessSparseMatrix*>(m_.get())->mutable_matrix(); | 
 |  | 
 |   std::unique_ptr<CompressedRowSparseMatrix> lhs; | 
 |   const CompressedRowSparseMatrix::StorageType storage_type = | 
 |       sparse_cholesky_->StorageType(); | 
 |   if (storage_type == CompressedRowSparseMatrix::UPPER_TRIANGULAR) { | 
 |     lhs.reset(CompressedRowSparseMatrix::FromTripletSparseMatrix(*tsm)); | 
 |     lhs->set_storage_type(CompressedRowSparseMatrix::UPPER_TRIANGULAR); | 
 |   } else { | 
 |     lhs.reset( | 
 |         CompressedRowSparseMatrix::FromTripletSparseMatrixTransposed(*tsm)); | 
 |     lhs->set_storage_type(CompressedRowSparseMatrix::LOWER_TRIANGULAR); | 
 |   } | 
 |  | 
 |   std::string message; | 
 |   return sparse_cholesky_->Factorize(lhs.get(), &message); | 
 | } | 
 |  | 
 | void VisibilityBasedPreconditioner::RightMultiply(const double* x, | 
 |                                                   double* y) const { | 
 |   CHECK(x != nullptr); | 
 |   CHECK(y != nullptr); | 
 |   CHECK(sparse_cholesky_ != nullptr); | 
 |   std::string message; | 
 |   sparse_cholesky_->Solve(x, y, &message); | 
 | } | 
 |  | 
 | int VisibilityBasedPreconditioner::num_rows() const { return m_->num_rows(); } | 
 |  | 
 | // Classify camera/f_block pairs as in and out of the preconditioner, | 
 | // based on whether the cluster pair that they belong to is in the | 
 | // preconditioner or not. | 
 | bool VisibilityBasedPreconditioner::IsBlockPairInPreconditioner( | 
 |     const int block1, const int block2) const { | 
 |   int cluster1 = cluster_membership_[block1]; | 
 |   int cluster2 = cluster_membership_[block2]; | 
 |   if (cluster1 > cluster2) { | 
 |     swap(cluster1, cluster2); | 
 |   } | 
 |   return (cluster_pairs_.count(make_pair(cluster1, cluster2)) > 0); | 
 | } | 
 |  | 
 | bool VisibilityBasedPreconditioner::IsBlockPairOffDiagonal( | 
 |     const int block1, const int block2) const { | 
 |   return (cluster_membership_[block1] != cluster_membership_[block2]); | 
 | } | 
 |  | 
 | // Convert a graph into a list of edges that includes self edges for | 
 | // each vertex. | 
 | void VisibilityBasedPreconditioner::ForestToClusterPairs( | 
 |     const WeightedGraph<int>& forest, | 
 |     std::unordered_set<pair<int, int>, pair_hash>* cluster_pairs) const { | 
 |   CHECK(cluster_pairs != nullptr); | 
 |   cluster_pairs->clear(); | 
 |   const std::unordered_set<int>& vertices = forest.vertices(); | 
 |   CHECK_EQ(vertices.size(), num_clusters_); | 
 |  | 
 |   // Add all the cluster pairs corresponding to the edges in the | 
 |   // forest. | 
 |   for (const int cluster1 : vertices) { | 
 |     cluster_pairs->insert(make_pair(cluster1, cluster1)); | 
 |     const std::unordered_set<int>& neighbors = forest.Neighbors(cluster1); | 
 |     for (const int cluster2 : neighbors) { | 
 |       if (cluster1 < cluster2) { | 
 |         cluster_pairs->insert(make_pair(cluster1, cluster2)); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // The visibility set of a cluster is the union of the visibility sets | 
 | // of all its cameras. In other words, the set of points visible to | 
 | // any camera in the cluster. | 
 | void VisibilityBasedPreconditioner::ComputeClusterVisibility( | 
 |     const vector<set<int>>& visibility, | 
 |     vector<set<int>>* cluster_visibility) const { | 
 |   CHECK(cluster_visibility != nullptr); | 
 |   cluster_visibility->resize(0); | 
 |   cluster_visibility->resize(num_clusters_); | 
 |   for (int i = 0; i < num_blocks_; ++i) { | 
 |     const int cluster_id = cluster_membership_[i]; | 
 |     (*cluster_visibility)[cluster_id].insert(visibility[i].begin(), | 
 |                                              visibility[i].end()); | 
 |   } | 
 | } | 
 |  | 
 | // Construct a graph whose vertices are the clusters, and the edge | 
 | // weights are the number of 3D points visible to cameras in both the | 
 | // vertices. | 
 | WeightedGraph<int>* VisibilityBasedPreconditioner::CreateClusterGraph( | 
 |     const vector<set<int>>& cluster_visibility) const { | 
 |   WeightedGraph<int>* cluster_graph = new WeightedGraph<int>; | 
 |  | 
 |   for (int i = 0; i < num_clusters_; ++i) { | 
 |     cluster_graph->AddVertex(i); | 
 |   } | 
 |  | 
 |   for (int i = 0; i < num_clusters_; ++i) { | 
 |     const set<int>& cluster_i = cluster_visibility[i]; | 
 |     for (int j = i + 1; j < num_clusters_; ++j) { | 
 |       vector<int> intersection; | 
 |       const set<int>& cluster_j = cluster_visibility[j]; | 
 |       set_intersection(cluster_i.begin(), | 
 |                        cluster_i.end(), | 
 |                        cluster_j.begin(), | 
 |                        cluster_j.end(), | 
 |                        back_inserter(intersection)); | 
 |  | 
 |       if (intersection.size() > 0) { | 
 |         // Clusters interact strongly when they share a large number | 
 |         // of 3D points. The degree-2 maximum spanning forest | 
 |         // algorithm, iterates on the edges in decreasing order of | 
 |         // their weight, which is the number of points shared by the | 
 |         // two cameras that it connects. | 
 |         cluster_graph->AddEdge(i, j, intersection.size()); | 
 |       } | 
 |     } | 
 |   } | 
 |   return cluster_graph; | 
 | } | 
 |  | 
 | // Canonical views clustering returns a std::unordered_map from vertices to | 
 | // cluster ids. Convert this into a flat array for quick lookup. It is | 
 | // possible that some of the vertices may not be associated with any | 
 | // cluster. In that case, randomly assign them to one of the clusters. | 
 | // | 
 | // The cluster ids can be non-contiguous integers. So as we flatten | 
 | // the membership_map, we also map the cluster ids to a contiguous set | 
 | // of integers so that the cluster ids are in [0, num_clusters_). | 
 | void VisibilityBasedPreconditioner::FlattenMembershipMap( | 
 |     const std::unordered_map<int, int>& membership_map, | 
 |     vector<int>* membership_vector) const { | 
 |   CHECK(membership_vector != nullptr); | 
 |   membership_vector->resize(0); | 
 |   membership_vector->resize(num_blocks_, -1); | 
 |  | 
 |   std::unordered_map<int, int> cluster_id_to_index; | 
 |   // Iterate over the cluster membership map and update the | 
 |   // cluster_membership_ vector assigning arbitrary cluster ids to | 
 |   // the few cameras that have not been clustered. | 
 |   for (const auto& m : membership_map) { | 
 |     const int camera_id = m.first; | 
 |     int cluster_id = m.second; | 
 |  | 
 |     // If the view was not clustered, randomly assign it to one of the | 
 |     // clusters. This preserves the mathematical correctness of the | 
 |     // preconditioner. If there are too many views which are not | 
 |     // clustered, it may lead to some quality degradation though. | 
 |     // | 
 |     // TODO(sameeragarwal): Check if a large number of views have not | 
 |     // been clustered and deal with it? | 
 |     if (cluster_id == -1) { | 
 |       cluster_id = camera_id % num_clusters_; | 
 |     } | 
 |  | 
 |     const int index = FindWithDefault( | 
 |         cluster_id_to_index, cluster_id, cluster_id_to_index.size()); | 
 |  | 
 |     if (index == cluster_id_to_index.size()) { | 
 |       cluster_id_to_index[cluster_id] = index; | 
 |     } | 
 |  | 
 |     CHECK_LT(index, num_clusters_); | 
 |     membership_vector->at(camera_id) = index; | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |