|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2022 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include <cmath> | 
|  | #include <limits> | 
|  | #include <memory> | 
|  |  | 
|  | #include "ceres/dynamic_numeric_diff_cost_function.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/manifold.h" | 
|  | #include "ceres/numeric_diff_options.h" | 
|  | #include "ceres/types.h" | 
|  | #include "gmock/gmock.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres { | 
|  |  | 
|  | // Matchers and macros for help with testing Manifold objects. | 
|  | // | 
|  | // Testing a Manifold has two parts. | 
|  | // | 
|  | // 1. Checking that Manifold::Plus is correctly defined. This requires per | 
|  | // manifold tests. | 
|  | // | 
|  | // 2. The other methods of the manifold have mathematical properties that make | 
|  | // it compatible with Plus, as described in: | 
|  | // | 
|  | // "Integrating Generic Sensor Fusion Algorithms with Sound State | 
|  | // Representations through Encapsulation of Manifolds" | 
|  | // By C. Hertzberg, R. Wagner, U. Frese and L. Schroder | 
|  | // https://arxiv.org/pdf/1107.1119.pdf | 
|  | // | 
|  | // These tests are implemented using generic matchers defined below which can | 
|  | // all be called by the macro EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, | 
|  | // delta, y, tolerance). See manifold_test.cc for example usage. | 
|  |  | 
|  | // Checks that the invariant Plus(x, 0) == x holds. | 
|  | MATCHER_P2(XPlusZeroIsXAt, x, tolerance, "") { | 
|  | const int ambient_size = arg.AmbientSize(); | 
|  | const int tangent_size = arg.TangentSize(); | 
|  |  | 
|  | Vector actual = Vector::Zero(ambient_size); | 
|  | Vector zero = Vector::Zero(tangent_size); | 
|  | EXPECT_TRUE(arg.Plus(x.data(), zero.data(), actual.data())); | 
|  | const double n = (actual - x).norm(); | 
|  | const double d = x.norm(); | 
|  | const double diffnorm = (d == 0.0) ? n : (n / d); | 
|  | if (diffnorm > tolerance) { | 
|  | *result_listener << "\nexpected (x): " << x.transpose() | 
|  | << "\nactual: " << actual.transpose() | 
|  | << "\ndiffnorm: " << diffnorm; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Checks that the invariant Minus(x, x) == 0 holds. | 
|  | MATCHER_P2(XMinusXIsZeroAt, x, tolerance, "") { | 
|  | const int tangent_size = arg.TangentSize(); | 
|  | Vector actual = Vector::Zero(tangent_size); | 
|  | EXPECT_TRUE(arg.Minus(x.data(), x.data(), actual.data())); | 
|  | const double diffnorm = actual.norm(); | 
|  | if (diffnorm > tolerance) { | 
|  | *result_listener << "\nx: " << x.transpose()  // | 
|  | << "\nexpected: 0 0 0" | 
|  | << "\nactual: " << actual.transpose() | 
|  | << "\ndiffnorm: " << diffnorm; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Helper struct to curry Plus(x, .) so that it can be numerically | 
|  | // differentiated. | 
|  | struct PlusFunctor { | 
|  | PlusFunctor(const Manifold& manifold, const double* x) | 
|  | : manifold(manifold), x(x) {} | 
|  | bool operator()(double const* const* parameters, double* x_plus_delta) const { | 
|  | return manifold.Plus(x, parameters[0], x_plus_delta); | 
|  | } | 
|  |  | 
|  | const Manifold& manifold; | 
|  | const double* x; | 
|  | }; | 
|  |  | 
|  | // Checks that the output of PlusJacobian matches the one obtained by | 
|  | // numerically evaluating D_2 Plus(x,0). | 
|  | MATCHER_P2(HasCorrectPlusJacobianAt, x, tolerance, "") { | 
|  | const int ambient_size = arg.AmbientSize(); | 
|  | const int tangent_size = arg.TangentSize(); | 
|  |  | 
|  | NumericDiffOptions options; | 
|  | options.ridders_relative_initial_step_size = 1e-4; | 
|  |  | 
|  | DynamicNumericDiffCostFunction<PlusFunctor, RIDDERS> cost_function( | 
|  | new PlusFunctor(arg, x.data()), TAKE_OWNERSHIP, options); | 
|  | cost_function.AddParameterBlock(tangent_size); | 
|  | cost_function.SetNumResiduals(ambient_size); | 
|  |  | 
|  | Vector zero = Vector::Zero(tangent_size); | 
|  | double* parameters[1] = {zero.data()}; | 
|  |  | 
|  | Vector x_plus_zero = Vector::Zero(ambient_size); | 
|  | Matrix expected = Matrix::Zero(ambient_size, tangent_size); | 
|  | double* jacobians[1] = {expected.data()}; | 
|  |  | 
|  | EXPECT_TRUE( | 
|  | cost_function.Evaluate(parameters, x_plus_zero.data(), jacobians)); | 
|  |  | 
|  | Matrix actual = Matrix::Random(ambient_size, tangent_size); | 
|  | EXPECT_TRUE(arg.PlusJacobian(x.data(), actual.data())); | 
|  |  | 
|  | const double n = (actual - expected).norm(); | 
|  | const double d = expected.norm(); | 
|  | const double diffnorm = (d == 0.0) ? n : n / d; | 
|  | if (diffnorm > tolerance) { | 
|  | *result_listener << "\nx: " << x.transpose() << "\nexpected: \n" | 
|  | << expected << "\nactual:\n" | 
|  | << actual << "\ndiff:\n" | 
|  | << expected - actual << "\ndiffnorm : " << diffnorm; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Checks that the invariant Minus(Plus(x, delta), x) == delta holds. | 
|  | MATCHER_P3(MinusPlusIsIdentityAt, x, delta, tolerance, "") { | 
|  | const int ambient_size = arg.AmbientSize(); | 
|  | const int tangent_size = arg.TangentSize(); | 
|  | Vector x_plus_delta = Vector::Zero(ambient_size); | 
|  | EXPECT_TRUE(arg.Plus(x.data(), delta.data(), x_plus_delta.data())); | 
|  | Vector actual = Vector::Zero(tangent_size); | 
|  | EXPECT_TRUE(arg.Minus(x_plus_delta.data(), x.data(), actual.data())); | 
|  |  | 
|  | const double n = (actual - delta).norm(); | 
|  | const double d = delta.norm(); | 
|  | const double diffnorm = (d == 0.0) ? n : (n / d); | 
|  | if (diffnorm > tolerance) { | 
|  | *result_listener << "\nx: " << x.transpose() | 
|  | << "\nexpected: " << delta.transpose() | 
|  | << "\nactual:" << actual.transpose() | 
|  | << "\ndiff:" << (delta - actual).transpose() | 
|  | << "\ndiffnorm: " << diffnorm; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Checks that the invariant Plus(Minus(y, x), x) == y holds. | 
|  | MATCHER_P3(PlusMinusIsIdentityAt, x, y, tolerance, "") { | 
|  | const int ambient_size = arg.AmbientSize(); | 
|  | const int tangent_size = arg.TangentSize(); | 
|  |  | 
|  | Vector y_minus_x = Vector::Zero(tangent_size); | 
|  | EXPECT_TRUE(arg.Minus(y.data(), x.data(), y_minus_x.data())); | 
|  |  | 
|  | Vector actual = Vector::Zero(ambient_size); | 
|  | EXPECT_TRUE(arg.Plus(x.data(), y_minus_x.data(), actual.data())); | 
|  |  | 
|  | const double n = (actual - y).norm(); | 
|  | const double d = y.norm(); | 
|  | const double diffnorm = (d == 0.0) ? n : (n / d); | 
|  | if (diffnorm > tolerance) { | 
|  | *result_listener << "\nx: " << x.transpose() | 
|  | << "\nexpected: " << y.transpose() | 
|  | << "\nactual:" << actual.transpose() | 
|  | << "\ndiff:" << (y - actual).transpose() | 
|  | << "\ndiffnorm: " << diffnorm; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Helper struct to curry Minus(., x) so that it can be numerically | 
|  | // differentiated. | 
|  | struct MinusFunctor { | 
|  | MinusFunctor(const Manifold& manifold, const double* x) | 
|  | : manifold(manifold), x(x) {} | 
|  | bool operator()(double const* const* parameters, double* y_minus_x) const { | 
|  | return manifold.Minus(parameters[0], x, y_minus_x); | 
|  | } | 
|  |  | 
|  | const Manifold& manifold; | 
|  | const double* x; | 
|  | }; | 
|  |  | 
|  | // Checks that the output of MinusJacobian matches the one obtained by | 
|  | // numerically evaluating D_1 Minus(x,x). | 
|  | MATCHER_P2(HasCorrectMinusJacobianAt, x, tolerance, "") { | 
|  | const int ambient_size = arg.AmbientSize(); | 
|  | const int tangent_size = arg.TangentSize(); | 
|  |  | 
|  | Vector y = x; | 
|  | Vector y_minus_x = Vector::Zero(tangent_size); | 
|  |  | 
|  | NumericDiffOptions options; | 
|  | options.ridders_relative_initial_step_size = 1e-4; | 
|  | DynamicNumericDiffCostFunction<MinusFunctor, RIDDERS> cost_function( | 
|  | new MinusFunctor(arg, x.data()), TAKE_OWNERSHIP, options); | 
|  | cost_function.AddParameterBlock(ambient_size); | 
|  | cost_function.SetNumResiduals(tangent_size); | 
|  |  | 
|  | double* parameters[1] = {y.data()}; | 
|  |  | 
|  | Matrix expected = Matrix::Zero(tangent_size, ambient_size); | 
|  | double* jacobians[1] = {expected.data()}; | 
|  |  | 
|  | EXPECT_TRUE(cost_function.Evaluate(parameters, y_minus_x.data(), jacobians)); | 
|  |  | 
|  | Matrix actual = Matrix::Random(tangent_size, ambient_size); | 
|  | EXPECT_TRUE(arg.MinusJacobian(x.data(), actual.data())); | 
|  |  | 
|  | const double n = (actual - expected).norm(); | 
|  | const double d = expected.norm(); | 
|  | const double diffnorm = (d == 0.0) ? n : (n / d); | 
|  | if (diffnorm > tolerance) { | 
|  | *result_listener << "\nx: " << x.transpose() << "\nexpected: \n" | 
|  | << expected << "\nactual:\n" | 
|  | << actual << "\ndiff:\n" | 
|  | << expected - actual << "\ndiffnorm: " << diffnorm; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Checks that D_delta Minus(Plus(x, delta), x) at delta = 0 is an identity | 
|  | // matrix. | 
|  | MATCHER_P2(MinusPlusJacobianIsIdentityAt, x, tolerance, "") { | 
|  | const int ambient_size = arg.AmbientSize(); | 
|  | const int tangent_size = arg.TangentSize(); | 
|  |  | 
|  | Matrix plus_jacobian(ambient_size, tangent_size); | 
|  | EXPECT_TRUE(arg.PlusJacobian(x.data(), plus_jacobian.data())); | 
|  | Matrix minus_jacobian(tangent_size, ambient_size); | 
|  | EXPECT_TRUE(arg.MinusJacobian(x.data(), minus_jacobian.data())); | 
|  |  | 
|  | const Matrix actual = minus_jacobian * plus_jacobian; | 
|  | const Matrix expected = Matrix::Identity(tangent_size, tangent_size); | 
|  |  | 
|  | const double n = (actual - expected).norm(); | 
|  | const double d = expected.norm(); | 
|  | const double diffnorm = n / d; | 
|  | if (diffnorm > tolerance) { | 
|  | *result_listener << "\nx: " << x.transpose() << "\nexpected: \n" | 
|  | << expected << "\nactual:\n" | 
|  | << actual << "\ndiff:\n" | 
|  | << expected - actual << "\ndiffnorm: " << diffnorm; | 
|  |  | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Verify that the output of RightMultiplyByPlusJacobian is ambient_matrix * | 
|  | // plus_jacobian. | 
|  | MATCHER_P2(HasCorrectRightMultiplyByPlusJacobianAt, x, tolerance, "") { | 
|  | const int ambient_size = arg.AmbientSize(); | 
|  | const int tangent_size = arg.TangentSize(); | 
|  |  | 
|  | constexpr int kMinNumRows = 0; | 
|  | constexpr int kMaxNumRows = 3; | 
|  | for (int num_rows = kMinNumRows; num_rows <= kMaxNumRows; ++num_rows) { | 
|  | Matrix plus_jacobian = Matrix::Random(ambient_size, tangent_size); | 
|  | EXPECT_TRUE(arg.PlusJacobian(x.data(), plus_jacobian.data())); | 
|  |  | 
|  | Matrix ambient_matrix = Matrix::Random(num_rows, ambient_size); | 
|  | Matrix expected = ambient_matrix * plus_jacobian; | 
|  |  | 
|  | Matrix actual = Matrix::Random(num_rows, tangent_size); | 
|  | EXPECT_TRUE(arg.RightMultiplyByPlusJacobian( | 
|  | x.data(), num_rows, ambient_matrix.data(), actual.data())); | 
|  | const double n = (actual - expected).norm(); | 
|  | const double d = expected.norm(); | 
|  | const double diffnorm = (d == 0.0) ? n : (n / d); | 
|  | if (diffnorm > tolerance) { | 
|  | *result_listener << "\nx: " << x.transpose() << "\nambient_matrix : \n" | 
|  | << ambient_matrix << "\nplus_jacobian : \n" | 
|  | << plus_jacobian << "\nexpected: \n" | 
|  | << expected << "\nactual:\n" | 
|  | << actual << "\ndiff:\n" | 
|  | << expected - actual << "\ndiffnorm : " << diffnorm; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #define EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, tolerance) \ | 
|  | Vector zero_tangent = Vector::Zero(manifold.TangentSize());                  \ | 
|  | EXPECT_THAT(manifold, XPlusZeroIsXAt(x, tolerance));                         \ | 
|  | EXPECT_THAT(manifold, XMinusXIsZeroAt(x, tolerance));                        \ | 
|  | EXPECT_THAT(manifold, MinusPlusIsIdentityAt(x, delta, tolerance));           \ | 
|  | EXPECT_THAT(manifold, MinusPlusIsIdentityAt(x, zero_tangent, tolerance));    \ | 
|  | EXPECT_THAT(manifold, PlusMinusIsIdentityAt(x, x, tolerance));               \ | 
|  | EXPECT_THAT(manifold, PlusMinusIsIdentityAt(x, y, tolerance));               \ | 
|  | EXPECT_THAT(manifold, HasCorrectPlusJacobianAt(x, tolerance));               \ | 
|  | EXPECT_THAT(manifold, HasCorrectMinusJacobianAt(x, tolerance));              \ | 
|  | EXPECT_THAT(manifold, MinusPlusJacobianIsIdentityAt(x, tolerance));          \ | 
|  | EXPECT_THAT(manifold, HasCorrectRightMultiplyByPlusJacobianAt(x, tolerance)); | 
|  |  | 
|  | }  // namespace ceres |