|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2019 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: keir@google.com (Keir Mierle) | 
|  | //         sameeragarwal@google.com (Sameer Agarwal) | 
|  | // | 
|  | // Create CostFunctions as needed by the least squares framework with jacobians | 
|  | // computed via numeric (a.k.a. finite) differentiation. For more details see | 
|  | // http://en.wikipedia.org/wiki/Numerical_differentiation. | 
|  | // | 
|  | // To get an numerically differentiated cost function, you must define | 
|  | // a class with a operator() (a functor) that computes the residuals. | 
|  | // | 
|  | // The function must write the computed value in the last argument | 
|  | // (the only non-const one) and return true to indicate success. | 
|  | // Please see cost_function.h for details on how the return value | 
|  | // maybe used to impose simple constraints on the parameter block. | 
|  | // | 
|  | // For example, consider a scalar error e = k - x'y, where both x and y are | 
|  | // two-dimensional column vector parameters, the prime sign indicates | 
|  | // transposition, and k is a constant. The form of this error, which is the | 
|  | // difference between a constant and an expression, is a common pattern in least | 
|  | // squares problems. For example, the value x'y might be the model expectation | 
|  | // for a series of measurements, where there is an instance of the cost function | 
|  | // for each measurement k. | 
|  | // | 
|  | // The actual cost added to the total problem is e^2, or (k - x'k)^2; however, | 
|  | // the squaring is implicitly done by the optimization framework. | 
|  | // | 
|  | // To write an numerically-differentiable cost function for the above model, | 
|  | // first define the object | 
|  | // | 
|  | //   class MyScalarCostFunctor { | 
|  | //     explicit MyScalarCostFunctor(double k): k_(k) {} | 
|  | // | 
|  | //     bool operator()(const double* const x, | 
|  | //                     const double* const y, | 
|  | //                     double* residuals) const { | 
|  | //       residuals[0] = k_ - x[0] * y[0] - x[1] * y[1]; | 
|  | //       return true; | 
|  | //     } | 
|  | // | 
|  | //    private: | 
|  | //     double k_; | 
|  | //   }; | 
|  | // | 
|  | // Note that in the declaration of operator() the input parameters x | 
|  | // and y come first, and are passed as const pointers to arrays of | 
|  | // doubles. If there were three input parameters, then the third input | 
|  | // parameter would come after y. The output is always the last | 
|  | // parameter, and is also a pointer to an array. In the example above, | 
|  | // the residual is a scalar, so only residuals[0] is set. | 
|  | // | 
|  | // Then given this class definition, the numerically differentiated | 
|  | // cost function with central differences used for computing the | 
|  | // derivative can be constructed as follows. | 
|  | // | 
|  | //   CostFunction* cost_function | 
|  | //       = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, 1, 2, 2>( | 
|  | //           new MyScalarCostFunctor(1.0));                    ^     ^  ^  ^ | 
|  | //                                                             |     |  |  | | 
|  | //                                 Finite Differencing Scheme -+     |  |  | | 
|  | //                                 Dimension of residual ------------+  |  | | 
|  | //                                 Dimension of x ----------------------+  | | 
|  | //                                 Dimension of y -------------------------+ | 
|  | // | 
|  | // In this example, there is usually an instance for each measurement of k. | 
|  | // | 
|  | // In the instantiation above, the template parameters following | 
|  | // "MyScalarCostFunctor", "1, 2, 2", describe the functor as computing | 
|  | // a 1-dimensional output from two arguments, both 2-dimensional. | 
|  | // | 
|  | // NumericDiffCostFunction also supports cost functions with a | 
|  | // runtime-determined number of residuals. For example: | 
|  | // | 
|  | // clang-format off | 
|  | // | 
|  | //   CostFunction* cost_function | 
|  | //       = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, DYNAMIC, 2, 2>( | 
|  | //           new CostFunctorWithDynamicNumResiduals(1.0),               ^     ^  ^ | 
|  | //           TAKE_OWNERSHIP,                                            |     |  | | 
|  | //           runtime_number_of_residuals); <----+                       |     |  | | 
|  | //                                              |                       |     |  | | 
|  | //                                              |                       |     |  | | 
|  | //             Actual number of residuals ------+                       |     |  | | 
|  | //             Indicate dynamic number of residuals --------------------+     |  | | 
|  | //             Dimension of x ------------------------------------------------+  | | 
|  | //             Dimension of y ---------------------------------------------------+ | 
|  | // clang-format on | 
|  | // | 
|  | // | 
|  | // The central difference method is considerably more accurate at the cost of | 
|  | // twice as many function evaluations than forward difference. Consider using | 
|  | // central differences begin with, and only after that works, trying forward | 
|  | // difference to improve performance. | 
|  | // | 
|  | // WARNING #1: A common beginner's error when first using | 
|  | // NumericDiffCostFunction is to get the sizing wrong. In particular, | 
|  | // there is a tendency to set the template parameters to (dimension of | 
|  | // residual, number of parameters) instead of passing a dimension | 
|  | // parameter for *every parameter*. In the example above, that would | 
|  | // be <MyScalarCostFunctor, 1, 2>, which is missing the last '2' | 
|  | // argument. Please be careful when setting the size parameters. | 
|  | // | 
|  | //////////////////////////////////////////////////////////////////////////// | 
|  | //////////////////////////////////////////////////////////////////////////// | 
|  | // | 
|  | // ALTERNATE INTERFACE | 
|  | // | 
|  | // For a variety of reasons, including compatibility with legacy code, | 
|  | // NumericDiffCostFunction can also take CostFunction objects as | 
|  | // input. The following describes how. | 
|  | // | 
|  | // To get a numerically differentiated cost function, define a | 
|  | // subclass of CostFunction such that the Evaluate() function ignores | 
|  | // the jacobian parameter. The numeric differentiation wrapper will | 
|  | // fill in the jacobian parameter if necessary by repeatedly calling | 
|  | // the Evaluate() function with small changes to the appropriate | 
|  | // parameters, and computing the slope. For performance, the numeric | 
|  | // differentiation wrapper class is templated on the concrete cost | 
|  | // function, even though it could be implemented only in terms of the | 
|  | // virtual CostFunction interface. | 
|  | // | 
|  | // The numerically differentiated version of a cost function for a cost function | 
|  | // can be constructed as follows: | 
|  | // | 
|  | //   CostFunction* cost_function | 
|  | //       = new NumericDiffCostFunction<MyCostFunction, CENTRAL, 1, 4, 8>( | 
|  | //           new MyCostFunction(...), TAKE_OWNERSHIP); | 
|  | // | 
|  | // where MyCostFunction has 1 residual and 2 parameter blocks with sizes 4 and 8 | 
|  | // respectively. Look at the tests for a more detailed example. | 
|  | // | 
|  | // TODO(keir): Characterize accuracy; mention pitfalls; provide alternatives. | 
|  |  | 
|  | #ifndef CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_ | 
|  | #define CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_ | 
|  |  | 
|  | #include <array> | 
|  | #include <memory> | 
|  |  | 
|  | #include "Eigen/Dense" | 
|  | #include "ceres/cost_function.h" | 
|  | #include "ceres/internal/numeric_diff.h" | 
|  | #include "ceres/internal/parameter_dims.h" | 
|  | #include "ceres/numeric_diff_options.h" | 
|  | #include "ceres/sized_cost_function.h" | 
|  | #include "ceres/types.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | namespace ceres { | 
|  |  | 
|  | template <typename CostFunctor, | 
|  | NumericDiffMethodType method = CENTRAL, | 
|  | int kNumResiduals = 0,  // Number of residuals, or ceres::DYNAMIC | 
|  | int... Ns>              // Parameters dimensions for each block. | 
|  | class NumericDiffCostFunction : public SizedCostFunction<kNumResiduals, Ns...> { | 
|  | public: | 
|  | NumericDiffCostFunction( | 
|  | CostFunctor* functor, | 
|  | Ownership ownership = TAKE_OWNERSHIP, | 
|  | int num_residuals = kNumResiduals, | 
|  | const NumericDiffOptions& options = NumericDiffOptions()) | 
|  | : functor_(functor), ownership_(ownership), options_(options) { | 
|  | if (kNumResiduals == DYNAMIC) { | 
|  | SizedCostFunction<kNumResiduals, Ns...>::set_num_residuals(num_residuals); | 
|  | } | 
|  | } | 
|  |  | 
|  | explicit NumericDiffCostFunction(NumericDiffCostFunction&& other) | 
|  | : functor_(std::move(other.functor_)), ownership_(other.ownership_) {} | 
|  |  | 
|  | virtual ~NumericDiffCostFunction() { | 
|  | if (ownership_ != TAKE_OWNERSHIP) { | 
|  | functor_.release(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Evaluate(double const* const* parameters, | 
|  | double* residuals, | 
|  | double** jacobians) const override { | 
|  | using internal::FixedArray; | 
|  | using internal::NumericDiff; | 
|  |  | 
|  | using ParameterDims = | 
|  | typename SizedCostFunction<kNumResiduals, Ns...>::ParameterDims; | 
|  |  | 
|  | constexpr int kNumParameters = ParameterDims::kNumParameters; | 
|  | constexpr int kNumParameterBlocks = ParameterDims::kNumParameterBlocks; | 
|  |  | 
|  | // Get the function value (residuals) at the the point to evaluate. | 
|  | if (!internal::VariadicEvaluate<ParameterDims>( | 
|  | *functor_, parameters, residuals)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (jacobians == NULL) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Create a copy of the parameters which will get mutated. | 
|  | FixedArray<double> parameters_copy(kNumParameters); | 
|  | std::array<double*, kNumParameterBlocks> parameters_reference_copy = | 
|  | ParameterDims::GetUnpackedParameters(parameters_copy.data()); | 
|  |  | 
|  | for (int block = 0; block < kNumParameterBlocks; ++block) { | 
|  | memcpy(parameters_reference_copy[block], | 
|  | parameters[block], | 
|  | sizeof(double) * ParameterDims::GetDim(block)); | 
|  | } | 
|  |  | 
|  | internal::EvaluateJacobianForParameterBlocks<ParameterDims>:: | 
|  | template Apply<method, kNumResiduals>( | 
|  | functor_.get(), | 
|  | residuals, | 
|  | options_, | 
|  | SizedCostFunction<kNumResiduals, Ns...>::num_residuals(), | 
|  | parameters_reference_copy.data(), | 
|  | jacobians); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const CostFunctor & functor() const { return *functor_; } | 
|  |  | 
|  | private: | 
|  | std::unique_ptr<CostFunctor> functor_; | 
|  | Ownership ownership_; | 
|  | NumericDiffOptions options_; | 
|  | }; | 
|  |  | 
|  | }  // namespace ceres | 
|  |  | 
|  | #endif  // CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_ |