|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: strandmark@google.com (Petter Strandmark) | 
|  |  | 
|  | // This include must come before any #ifndef check on Ceres compile options. | 
|  | #include "ceres/internal/port.h" | 
|  |  | 
|  | #ifndef CERES_NO_CXSPARSE | 
|  |  | 
|  | #include <string> | 
|  | #include <vector> | 
|  |  | 
|  | #include "ceres/compressed_col_sparse_matrix_utils.h" | 
|  | #include "ceres/compressed_row_sparse_matrix.h" | 
|  | #include "ceres/cxsparse.h" | 
|  | #include "ceres/triplet_sparse_matrix.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | using std::vector; | 
|  |  | 
|  | CXSparse::CXSparse() : scratch_(nullptr), scratch_size_(0) {} | 
|  |  | 
|  | CXSparse::~CXSparse() { | 
|  | if (scratch_size_ > 0) { | 
|  | cs_di_free(scratch_); | 
|  | } | 
|  | } | 
|  |  | 
|  | csn* CXSparse::Cholesky(cs_di* A, cs_dis* symbolic_factor) { | 
|  | return cs_di_chol(A, symbolic_factor); | 
|  | } | 
|  |  | 
|  | void CXSparse::Solve(cs_dis* symbolic_factor, csn* numeric_factor, double* b) { | 
|  | // Make sure we have enough scratch space available. | 
|  | const int num_cols = numeric_factor->L->n; | 
|  | if (scratch_size_ < num_cols) { | 
|  | if (scratch_size_ > 0) { | 
|  | cs_di_free(scratch_); | 
|  | } | 
|  | scratch_ = | 
|  | reinterpret_cast<CS_ENTRY*>(cs_di_malloc(num_cols, sizeof(CS_ENTRY))); | 
|  | scratch_size_ = num_cols; | 
|  | } | 
|  |  | 
|  | // When the Cholesky factor succeeded, these methods are | 
|  | // guaranteed to succeeded as well. In the comments below, "x" | 
|  | // refers to the scratch space. | 
|  | // | 
|  | // Set x = P * b. | 
|  | CHECK(cs_di_ipvec(symbolic_factor->pinv, b, scratch_, num_cols)); | 
|  | // Set x = L \ x. | 
|  | CHECK(cs_di_lsolve(numeric_factor->L, scratch_)); | 
|  | // Set x = L' \ x. | 
|  | CHECK(cs_di_ltsolve(numeric_factor->L, scratch_)); | 
|  | // Set b = P' * x. | 
|  | CHECK(cs_di_pvec(symbolic_factor->pinv, scratch_, b, num_cols)); | 
|  | } | 
|  |  | 
|  | bool CXSparse::SolveCholesky(cs_di* lhs, double* rhs_and_solution) { | 
|  | return cs_cholsol(1, lhs, rhs_and_solution); | 
|  | } | 
|  |  | 
|  | cs_dis* CXSparse::AnalyzeCholesky(cs_di* A) { | 
|  | // order = 1 for Cholesky factor. | 
|  | return cs_schol(1, A); | 
|  | } | 
|  |  | 
|  | cs_dis* CXSparse::AnalyzeCholeskyWithNaturalOrdering(cs_di* A) { | 
|  | // order = 0 for Natural ordering. | 
|  | return cs_schol(0, A); | 
|  | } | 
|  |  | 
|  | cs_dis* CXSparse::BlockAnalyzeCholesky(cs_di* A, | 
|  | const vector<int>& row_blocks, | 
|  | const vector<int>& col_blocks) { | 
|  | const int num_row_blocks = row_blocks.size(); | 
|  | const int num_col_blocks = col_blocks.size(); | 
|  |  | 
|  | vector<int> block_rows; | 
|  | vector<int> block_cols; | 
|  | CompressedColumnScalarMatrixToBlockMatrix( | 
|  | A->i, A->p, row_blocks, col_blocks, &block_rows, &block_cols); | 
|  | cs_di block_matrix; | 
|  | block_matrix.m = num_row_blocks; | 
|  | block_matrix.n = num_col_blocks; | 
|  | block_matrix.nz = -1; | 
|  | block_matrix.nzmax = block_rows.size(); | 
|  | block_matrix.p = &block_cols[0]; | 
|  | block_matrix.i = &block_rows[0]; | 
|  | block_matrix.x = nullptr; | 
|  |  | 
|  | int* ordering = cs_amd(1, &block_matrix); | 
|  | vector<int> block_ordering(num_row_blocks, -1); | 
|  | std::copy(ordering, ordering + num_row_blocks, &block_ordering[0]); | 
|  | cs_free(ordering); | 
|  |  | 
|  | vector<int> scalar_ordering; | 
|  | BlockOrderingToScalarOrdering(row_blocks, block_ordering, &scalar_ordering); | 
|  |  | 
|  | cs_dis* symbolic_factor = | 
|  | reinterpret_cast<cs_dis*>(cs_calloc(1, sizeof(cs_dis))); | 
|  | symbolic_factor->pinv = cs_pinv(&scalar_ordering[0], A->n); | 
|  | cs* permuted_A = cs_symperm(A, symbolic_factor->pinv, 0); | 
|  |  | 
|  | symbolic_factor->parent = cs_etree(permuted_A, 0); | 
|  | int* postordering = cs_post(symbolic_factor->parent, A->n); | 
|  | int* column_counts = | 
|  | cs_counts(permuted_A, symbolic_factor->parent, postordering, 0); | 
|  | cs_free(postordering); | 
|  | cs_spfree(permuted_A); | 
|  |  | 
|  | symbolic_factor->cp = (int*)cs_malloc(A->n + 1, sizeof(int)); | 
|  | symbolic_factor->lnz = cs_cumsum(symbolic_factor->cp, column_counts, A->n); | 
|  | symbolic_factor->unz = symbolic_factor->lnz; | 
|  |  | 
|  | cs_free(column_counts); | 
|  |  | 
|  | if (symbolic_factor->lnz < 0) { | 
|  | cs_sfree(symbolic_factor); | 
|  | symbolic_factor = nullptr; | 
|  | } | 
|  |  | 
|  | return symbolic_factor; | 
|  | } | 
|  |  | 
|  | cs_di CXSparse::CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A) { | 
|  | cs_di At; | 
|  | At.m = A->num_cols(); | 
|  | At.n = A->num_rows(); | 
|  | At.nz = -1; | 
|  | At.nzmax = A->num_nonzeros(); | 
|  | At.p = A->mutable_rows(); | 
|  | At.i = A->mutable_cols(); | 
|  | At.x = A->mutable_values(); | 
|  | return At; | 
|  | } | 
|  |  | 
|  | cs_di* CXSparse::CreateSparseMatrix(TripletSparseMatrix* tsm) { | 
|  | cs_di_sparse tsm_wrapper; | 
|  | tsm_wrapper.nzmax = tsm->num_nonzeros(); | 
|  | tsm_wrapper.nz = tsm->num_nonzeros(); | 
|  | tsm_wrapper.m = tsm->num_rows(); | 
|  | tsm_wrapper.n = tsm->num_cols(); | 
|  | tsm_wrapper.p = tsm->mutable_cols(); | 
|  | tsm_wrapper.i = tsm->mutable_rows(); | 
|  | tsm_wrapper.x = tsm->mutable_values(); | 
|  |  | 
|  | return cs_compress(&tsm_wrapper); | 
|  | } | 
|  |  | 
|  | void CXSparse::ApproximateMinimumDegreeOrdering(cs_di* A, int* ordering) { | 
|  | int* cs_ordering = cs_amd(1, A); | 
|  | std::copy(cs_ordering, cs_ordering + A->m, ordering); | 
|  | cs_free(cs_ordering); | 
|  | } | 
|  |  | 
|  | cs_di* CXSparse::TransposeMatrix(cs_di* A) { return cs_di_transpose(A, 1); } | 
|  |  | 
|  | cs_di* CXSparse::MatrixMatrixMultiply(cs_di* A, cs_di* B) { | 
|  | return cs_di_multiply(A, B); | 
|  | } | 
|  |  | 
|  | void CXSparse::Free(cs_di* sparse_matrix) { cs_di_spfree(sparse_matrix); } | 
|  |  | 
|  | void CXSparse::Free(cs_dis* symbolic_factor) { cs_di_sfree(symbolic_factor); } | 
|  |  | 
|  | void CXSparse::Free(csn* numeric_factor) { cs_di_nfree(numeric_factor); } | 
|  |  | 
|  | std::unique_ptr<SparseCholesky> CXSparseCholesky::Create( | 
|  | const OrderingType ordering_type) { | 
|  | return std::unique_ptr<SparseCholesky>(new CXSparseCholesky(ordering_type)); | 
|  | } | 
|  |  | 
|  | CompressedRowSparseMatrix::StorageType CXSparseCholesky::StorageType() const { | 
|  | return CompressedRowSparseMatrix::LOWER_TRIANGULAR; | 
|  | } | 
|  |  | 
|  | CXSparseCholesky::CXSparseCholesky(const OrderingType ordering_type) | 
|  | : ordering_type_(ordering_type), | 
|  | symbolic_factor_(nullptr), | 
|  | numeric_factor_(nullptr) {} | 
|  |  | 
|  | CXSparseCholesky::~CXSparseCholesky() { | 
|  | FreeSymbolicFactorization(); | 
|  | FreeNumericFactorization(); | 
|  | } | 
|  |  | 
|  | LinearSolverTerminationType CXSparseCholesky::Factorize( | 
|  | CompressedRowSparseMatrix* lhs, std::string* message) { | 
|  | CHECK_EQ(lhs->storage_type(), StorageType()); | 
|  | if (lhs == nullptr) { | 
|  | *message = "Failure: Input lhs is nullptr."; | 
|  | return LINEAR_SOLVER_FATAL_ERROR; | 
|  | } | 
|  |  | 
|  | cs_di cs_lhs = cs_.CreateSparseMatrixTransposeView(lhs); | 
|  |  | 
|  | if (symbolic_factor_ == nullptr) { | 
|  | if (ordering_type_ == NATURAL) { | 
|  | symbolic_factor_ = cs_.AnalyzeCholeskyWithNaturalOrdering(&cs_lhs); | 
|  | } else { | 
|  | if (!lhs->col_blocks().empty() && !(lhs->row_blocks().empty())) { | 
|  | symbolic_factor_ = cs_.BlockAnalyzeCholesky( | 
|  | &cs_lhs, lhs->col_blocks(), lhs->row_blocks()); | 
|  | } else { | 
|  | symbolic_factor_ = cs_.AnalyzeCholesky(&cs_lhs); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (symbolic_factor_ == nullptr) { | 
|  | *message = "CXSparse Failure : Symbolic factorization failed."; | 
|  | return LINEAR_SOLVER_FATAL_ERROR; | 
|  | } | 
|  | } | 
|  |  | 
|  | FreeNumericFactorization(); | 
|  | numeric_factor_ = cs_.Cholesky(&cs_lhs, symbolic_factor_); | 
|  | if (numeric_factor_ == nullptr) { | 
|  | *message = "CXSparse Failure : Numeric factorization failed."; | 
|  | return LINEAR_SOLVER_FAILURE; | 
|  | } | 
|  |  | 
|  | return LINEAR_SOLVER_SUCCESS; | 
|  | } | 
|  |  | 
|  | LinearSolverTerminationType CXSparseCholesky::Solve(const double* rhs, | 
|  | double* solution, | 
|  | std::string* message) { | 
|  | CHECK(numeric_factor_ != nullptr) | 
|  | << "Solve called without a call to Factorize first."; | 
|  | const int num_cols = numeric_factor_->L->n; | 
|  | memcpy(solution, rhs, num_cols * sizeof(*solution)); | 
|  | cs_.Solve(symbolic_factor_, numeric_factor_, solution); | 
|  | return LINEAR_SOLVER_SUCCESS; | 
|  | } | 
|  |  | 
|  | void CXSparseCholesky::FreeSymbolicFactorization() { | 
|  | if (symbolic_factor_ != nullptr) { | 
|  | cs_.Free(symbolic_factor_); | 
|  | symbolic_factor_ = nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | void CXSparseCholesky::FreeNumericFactorization() { | 
|  | if (numeric_factor_ != nullptr) { | 
|  | cs_.Free(numeric_factor_); | 
|  | numeric_factor_ = nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres | 
|  |  | 
|  | #endif  // CERES_NO_CXSPARSE |