| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2022 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Authors: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include <memory> |
| #include <random> |
| |
| #include "Eigen/Dense" |
| #include "benchmark/benchmark.h" |
| #include "ceres/block_jacobi_preconditioner.h" |
| #include "ceres/block_sparse_matrix.h" |
| #include "ceres/fake_bundle_adjustment_jacobian.h" |
| #include "ceres/internal/config.h" |
| #include "ceres/internal/eigen.h" |
| |
| namespace ceres::internal { |
| |
| constexpr int kNumCameras = 1000; |
| constexpr int kNumPoints = 10000; |
| constexpr int kCameraSize = 6; |
| constexpr int kPointSize = 3; |
| constexpr double kVisibility = 0.1; |
| |
| constexpr int kNumRowBlocks = 100000; |
| constexpr int kNumColBlocks = 10000; |
| constexpr int kMinRowBlockSize = 1; |
| constexpr int kMaxRowBlockSize = 5; |
| constexpr int kMinColBlockSize = 1; |
| constexpr int kMaxColBlockSize = 15; |
| constexpr double kBlockDensity = 5.0 / kNumColBlocks; |
| |
| static void BM_BlockSparseJacobiPreconditionerBA(benchmark::State& state) { |
| std::mt19937 prng; |
| auto jacobian = CreateFakeBundleAdjustmentJacobian( |
| kNumCameras, kNumPoints, kCameraSize, kPointSize, kVisibility, prng); |
| |
| Preconditioner::Options preconditioner_options; |
| ContextImpl context; |
| preconditioner_options.context = &context; |
| preconditioner_options.num_threads = static_cast<int>(state.range(0)); |
| context.EnsureMinimumThreads(preconditioner_options.num_threads); |
| BlockSparseJacobiPreconditioner p(preconditioner_options, *jacobian); |
| |
| Vector d = Vector::Ones(jacobian->num_cols()); |
| for (auto _ : state) { |
| p.Update(*jacobian, d.data()); |
| } |
| } |
| |
| BENCHMARK(BM_BlockSparseJacobiPreconditionerBA) |
| ->Arg(1) |
| ->Arg(2) |
| ->Arg(4) |
| ->Arg(8) |
| ->Arg(16); |
| |
| static void BM_BlockCRSJacobiPreconditionerBA(benchmark::State& state) { |
| std::mt19937 prng; |
| auto jacobian = CreateFakeBundleAdjustmentJacobian( |
| kNumCameras, kNumPoints, kCameraSize, kPointSize, kVisibility, prng); |
| |
| CompressedRowSparseMatrix jacobian_crs( |
| jacobian->num_rows(), jacobian->num_cols(), jacobian->num_nonzeros()); |
| jacobian->ToCompressedRowSparseMatrix(&jacobian_crs); |
| Preconditioner::Options preconditioner_options; |
| ContextImpl context; |
| preconditioner_options.context = &context; |
| preconditioner_options.num_threads = static_cast<int>(state.range(0)); |
| context.EnsureMinimumThreads(preconditioner_options.num_threads); |
| BlockCRSJacobiPreconditioner p(preconditioner_options, jacobian_crs); |
| |
| Vector d = Vector::Ones(jacobian_crs.num_cols()); |
| for (auto _ : state) { |
| p.Update(jacobian_crs, d.data()); |
| } |
| } |
| |
| BENCHMARK(BM_BlockCRSJacobiPreconditionerBA) |
| ->Arg(1) |
| ->Arg(2) |
| ->Arg(4) |
| ->Arg(8) |
| ->Arg(16); |
| |
| static void BM_BlockSparseJacobiPreconditionerUnstructured( |
| benchmark::State& state) { |
| BlockSparseMatrix::RandomMatrixOptions options; |
| options.num_row_blocks = kNumRowBlocks; |
| options.num_col_blocks = kNumColBlocks; |
| options.min_row_block_size = kMinRowBlockSize; |
| options.min_col_block_size = kMinColBlockSize; |
| options.max_row_block_size = kMaxRowBlockSize; |
| options.max_col_block_size = kMaxColBlockSize; |
| options.block_density = kBlockDensity; |
| std::mt19937 prng; |
| |
| auto jacobian = BlockSparseMatrix::CreateRandomMatrix(options, prng); |
| Preconditioner::Options preconditioner_options; |
| ContextImpl context; |
| preconditioner_options.context = &context; |
| preconditioner_options.num_threads = static_cast<int>(state.range(0)); |
| context.EnsureMinimumThreads(preconditioner_options.num_threads); |
| BlockSparseJacobiPreconditioner p(preconditioner_options, *jacobian); |
| |
| Vector d = Vector::Ones(jacobian->num_cols()); |
| for (auto _ : state) { |
| p.Update(*jacobian, d.data()); |
| } |
| } |
| |
| BENCHMARK(BM_BlockSparseJacobiPreconditionerUnstructured) |
| ->Arg(1) |
| ->Arg(2) |
| ->Arg(4) |
| ->Arg(8) |
| ->Arg(16); |
| |
| static void BM_BlockCRSJacobiPreconditionerUnstructured( |
| benchmark::State& state) { |
| BlockSparseMatrix::RandomMatrixOptions options; |
| options.num_row_blocks = kNumRowBlocks; |
| options.num_col_blocks = kNumColBlocks; |
| options.min_row_block_size = kMinRowBlockSize; |
| options.min_col_block_size = kMinColBlockSize; |
| options.max_row_block_size = kMaxRowBlockSize; |
| options.max_col_block_size = kMaxColBlockSize; |
| options.block_density = kBlockDensity; |
| std::mt19937 prng; |
| |
| auto jacobian = BlockSparseMatrix::CreateRandomMatrix(options, prng); |
| CompressedRowSparseMatrix jacobian_crs( |
| jacobian->num_rows(), jacobian->num_cols(), jacobian->num_nonzeros()); |
| jacobian->ToCompressedRowSparseMatrix(&jacobian_crs); |
| Preconditioner::Options preconditioner_options; |
| ContextImpl context; |
| preconditioner_options.context = &context; |
| preconditioner_options.num_threads = static_cast<int>(state.range(0)); |
| context.EnsureMinimumThreads(preconditioner_options.num_threads); |
| BlockCRSJacobiPreconditioner p(preconditioner_options, jacobian_crs); |
| |
| Vector d = Vector::Ones(jacobian_crs.num_cols()); |
| for (auto _ : state) { |
| p.Update(jacobian_crs, d.data()); |
| } |
| } |
| BENCHMARK(BM_BlockCRSJacobiPreconditionerUnstructured) |
| ->Arg(1) |
| ->Arg(2) |
| ->Arg(4) |
| ->Arg(8) |
| ->Arg(16); |
| |
| } // namespace ceres::internal |
| |
| BENCHMARK_MAIN(); |