|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2022 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/block_random_access_diagonal_matrix.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <memory> | 
|  | #include <set> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | #include "Eigen/Dense" | 
|  | #include "ceres/compressed_row_sparse_matrix.h" | 
|  | #include "ceres/internal/export.h" | 
|  | #include "ceres/parallel_for.h" | 
|  | #include "ceres/stl_util.h" | 
|  | #include "ceres/types.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | BlockRandomAccessDiagonalMatrix::BlockRandomAccessDiagonalMatrix( | 
|  | const std::vector<Block>& blocks, ContextImpl* context, int num_threads) | 
|  | : context_(context), num_threads_(num_threads) { | 
|  | m_ = CompressedRowSparseMatrix::CreateBlockDiagonalMatrix(nullptr, blocks); | 
|  | double* values = m_->mutable_values(); | 
|  | layout_.reserve(blocks.size()); | 
|  | for (auto& block : blocks) { | 
|  | layout_.emplace_back(std::make_unique<CellInfo>(values)); | 
|  | values += block.size * block.size; | 
|  | } | 
|  | } | 
|  |  | 
|  | CellInfo* BlockRandomAccessDiagonalMatrix::GetCell(int row_block_id, | 
|  | int col_block_id, | 
|  | int* row, | 
|  | int* col, | 
|  | int* row_stride, | 
|  | int* col_stride) { | 
|  | if (row_block_id != col_block_id) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | auto& blocks = m_->row_blocks(); | 
|  | const int stride = blocks[row_block_id].size; | 
|  |  | 
|  | // Each cell is stored contiguously as its own little dense matrix. | 
|  | *row = 0; | 
|  | *col = 0; | 
|  | *row_stride = stride; | 
|  | *col_stride = stride; | 
|  | return layout_[row_block_id].get(); | 
|  | } | 
|  |  | 
|  | // Assume that the user does not hold any locks on any cell blocks | 
|  | // when they are calling SetZero. | 
|  | void BlockRandomAccessDiagonalMatrix::SetZero() { | 
|  | ParallelSetZero( | 
|  | context_, num_threads_, m_->mutable_values(), m_->num_nonzeros()); | 
|  | } | 
|  |  | 
|  | void BlockRandomAccessDiagonalMatrix::Invert() { | 
|  | auto& blocks = m_->row_blocks(); | 
|  | const int num_blocks = blocks.size(); | 
|  | ParallelFor(context_, 0, num_blocks, num_threads_, [this, blocks](int i) { | 
|  | auto* cell_info = layout_[i].get(); | 
|  | auto& block = blocks[i]; | 
|  | MatrixRef b(cell_info->values, block.size, block.size); | 
|  | b = b.selfadjointView<Eigen::Upper>().llt().solve( | 
|  | Matrix::Identity(block.size, block.size)); | 
|  | }); | 
|  | } | 
|  |  | 
|  | void BlockRandomAccessDiagonalMatrix::RightMultiplyAndAccumulate( | 
|  | const double* x, double* y) const { | 
|  | CHECK(x != nullptr); | 
|  | CHECK(y != nullptr); | 
|  | auto& blocks = m_->row_blocks(); | 
|  | const int num_blocks = blocks.size(); | 
|  | ParallelFor( | 
|  | context_, 0, num_blocks, num_threads_, [this, blocks, x, y](int i) { | 
|  | auto* cell_info = layout_[i].get(); | 
|  | auto& block = blocks[i]; | 
|  | ConstMatrixRef b(cell_info->values, block.size, block.size); | 
|  | VectorRef(y + block.position, block.size).noalias() += | 
|  | b * ConstVectorRef(x + block.position, block.size); | 
|  | }); | 
|  | } | 
|  |  | 
|  | }  // namespace ceres::internal |