| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2022 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/schur_complement_solver.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <ctime> | 
 | #include <memory> | 
 | #include <set> | 
 | #include <utility> | 
 | #include <vector> | 
 |  | 
 | #include "Eigen/Dense" | 
 | #include "Eigen/SparseCore" | 
 | #include "ceres/block_random_access_dense_matrix.h" | 
 | #include "ceres/block_random_access_matrix.h" | 
 | #include "ceres/block_random_access_sparse_matrix.h" | 
 | #include "ceres/block_sparse_matrix.h" | 
 | #include "ceres/block_structure.h" | 
 | #include "ceres/conjugate_gradients_solver.h" | 
 | #include "ceres/detect_structure.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/linear_solver.h" | 
 | #include "ceres/sparse_cholesky.h" | 
 | #include "ceres/triplet_sparse_matrix.h" | 
 | #include "ceres/types.h" | 
 | #include "ceres/wall_time.h" | 
 |  | 
 | namespace ceres::internal { | 
 | namespace { | 
 |  | 
 | class BlockRandomAccessSparseMatrixAdapter final | 
 |     : public ConjugateGradientsLinearOperator<Vector> { | 
 |  public: | 
 |   explicit BlockRandomAccessSparseMatrixAdapter( | 
 |       const BlockRandomAccessSparseMatrix& m) | 
 |       : m_(m) {} | 
 |  | 
 |   void RightMultiplyAndAccumulate(const Vector& x, Vector& y) final { | 
 |     m_.SymmetricRightMultiplyAndAccumulate(x.data(), y.data()); | 
 |   } | 
 |  | 
 |  private: | 
 |   const BlockRandomAccessSparseMatrix& m_; | 
 | }; | 
 |  | 
 | class BlockRandomAccessDiagonalMatrixAdapter final | 
 |     : public ConjugateGradientsLinearOperator<Vector> { | 
 |  public: | 
 |   explicit BlockRandomAccessDiagonalMatrixAdapter( | 
 |       const BlockRandomAccessDiagonalMatrix& m) | 
 |       : m_(m) {} | 
 |  | 
 |   // y = y + Ax; | 
 |   void RightMultiplyAndAccumulate(const Vector& x, Vector& y) final { | 
 |     m_.RightMultiplyAndAccumulate(x.data(), y.data()); | 
 |   } | 
 |  | 
 |  private: | 
 |   const BlockRandomAccessDiagonalMatrix& m_; | 
 | }; | 
 |  | 
 | }  // namespace | 
 |  | 
 | SchurComplementSolver::SchurComplementSolver( | 
 |     const LinearSolver::Options& options) | 
 |     : options_(options) { | 
 |   CHECK_GT(options.elimination_groups.size(), 1); | 
 |   CHECK_GT(options.elimination_groups[0], 0); | 
 |   CHECK(options.context != nullptr); | 
 | } | 
 |  | 
 | LinearSolver::Summary SchurComplementSolver::SolveImpl( | 
 |     BlockSparseMatrix* A, | 
 |     const double* b, | 
 |     const LinearSolver::PerSolveOptions& per_solve_options, | 
 |     double* x) { | 
 |   EventLogger event_logger("SchurComplementSolver::Solve"); | 
 |  | 
 |   const CompressedRowBlockStructure* bs = A->block_structure(); | 
 |   if (eliminator_ == nullptr) { | 
 |     const int num_eliminate_blocks = options_.elimination_groups[0]; | 
 |     const int num_f_blocks = bs->cols.size() - num_eliminate_blocks; | 
 |  | 
 |     InitStorage(bs); | 
 |     DetectStructure(*bs, | 
 |                     num_eliminate_blocks, | 
 |                     &options_.row_block_size, | 
 |                     &options_.e_block_size, | 
 |                     &options_.f_block_size); | 
 |  | 
 |     // For the special case of the static structure <2,3,6> with | 
 |     // exactly one f block use the SchurEliminatorForOneFBlock. | 
 |     // | 
 |     // TODO(sameeragarwal): A more scalable template specialization | 
 |     // mechanism that does not cause binary bloat. | 
 |     if (options_.row_block_size == 2 && options_.e_block_size == 3 && | 
 |         options_.f_block_size == 6 && num_f_blocks == 1) { | 
 |       eliminator_ = std::make_unique<SchurEliminatorForOneFBlock<2, 3, 6>>(); | 
 |     } else { | 
 |       eliminator_ = SchurEliminatorBase::Create(options_); | 
 |     } | 
 |  | 
 |     CHECK(eliminator_); | 
 |     const bool kFullRankETE = true; | 
 |     eliminator_->Init(num_eliminate_blocks, kFullRankETE, bs); | 
 |   } | 
 |  | 
 |   std::fill(x, x + A->num_cols(), 0.0); | 
 |   event_logger.AddEvent("Setup"); | 
 |  | 
 |   eliminator_->Eliminate(BlockSparseMatrixData(*A), | 
 |                          b, | 
 |                          per_solve_options.D, | 
 |                          lhs_.get(), | 
 |                          rhs_.data()); | 
 |   event_logger.AddEvent("Eliminate"); | 
 |  | 
 |   double* reduced_solution = x + A->num_cols() - lhs_->num_cols(); | 
 |   const LinearSolver::Summary summary = | 
 |       SolveReducedLinearSystem(per_solve_options, reduced_solution); | 
 |   event_logger.AddEvent("ReducedSolve"); | 
 |  | 
 |   if (summary.termination_type == LinearSolverTerminationType::SUCCESS) { | 
 |     eliminator_->BackSubstitute( | 
 |         BlockSparseMatrixData(*A), b, per_solve_options.D, reduced_solution, x); | 
 |     event_logger.AddEvent("BackSubstitute"); | 
 |   } | 
 |  | 
 |   return summary; | 
 | } | 
 | DenseSchurComplementSolver::DenseSchurComplementSolver( | 
 |     const LinearSolver::Options& options) | 
 |     : SchurComplementSolver(options), | 
 |       cholesky_(DenseCholesky::Create(options)) {} | 
 |  | 
 | DenseSchurComplementSolver::~DenseSchurComplementSolver() = default; | 
 |  | 
 | // Initialize a BlockRandomAccessDenseMatrix to store the Schur | 
 | // complement. | 
 | void DenseSchurComplementSolver::InitStorage( | 
 |     const CompressedRowBlockStructure* bs) { | 
 |   const int num_eliminate_blocks = options().elimination_groups[0]; | 
 |   const int num_col_blocks = bs->cols.size(); | 
 |   auto blocks = Tail(bs->cols, num_col_blocks - num_eliminate_blocks); | 
 |   set_lhs(std::make_unique<BlockRandomAccessDenseMatrix>( | 
 |       blocks, options().context, options().num_threads)); | 
 |   ResizeRhs(lhs()->num_rows()); | 
 | } | 
 |  | 
 | // Solve the system Sx = r, assuming that the matrix S is stored in a | 
 | // BlockRandomAccessDenseMatrix. The linear system is solved using | 
 | // Eigen's Cholesky factorization. | 
 | LinearSolver::Summary DenseSchurComplementSolver::SolveReducedLinearSystem( | 
 |     const LinearSolver::PerSolveOptions& /*per_solve_options*/, | 
 |     double* solution) { | 
 |   LinearSolver::Summary summary; | 
 |   summary.num_iterations = 0; | 
 |   summary.termination_type = LinearSolverTerminationType::SUCCESS; | 
 |   summary.message = "Success."; | 
 |  | 
 |   auto* m = down_cast<BlockRandomAccessDenseMatrix*>(mutable_lhs()); | 
 |   const int num_rows = m->num_rows(); | 
 |  | 
 |   // The case where there are no f blocks, and the system is block | 
 |   // diagonal. | 
 |   if (num_rows == 0) { | 
 |     return summary; | 
 |   } | 
 |  | 
 |   summary.num_iterations = 1; | 
 |   summary.termination_type = cholesky_->FactorAndSolve( | 
 |       num_rows, m->mutable_values(), rhs().data(), solution, &summary.message); | 
 |   return summary; | 
 | } | 
 |  | 
 | SparseSchurComplementSolver::SparseSchurComplementSolver( | 
 |     const LinearSolver::Options& options) | 
 |     : SchurComplementSolver(options) { | 
 |   if (options.type != ITERATIVE_SCHUR) { | 
 |     sparse_cholesky_ = SparseCholesky::Create(options); | 
 |   } | 
 | } | 
 |  | 
 | SparseSchurComplementSolver::~SparseSchurComplementSolver() { | 
 |   for (int i = 0; i < 4; ++i) { | 
 |     if (scratch_[i]) { | 
 |       delete scratch_[i]; | 
 |       scratch_[i] = nullptr; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // Determine the non-zero blocks in the Schur Complement matrix, and | 
 | // initialize a BlockRandomAccessSparseMatrix object. | 
 | void SparseSchurComplementSolver::InitStorage( | 
 |     const CompressedRowBlockStructure* bs) { | 
 |   const int num_eliminate_blocks = options().elimination_groups[0]; | 
 |   const int num_col_blocks = bs->cols.size(); | 
 |   const int num_row_blocks = bs->rows.size(); | 
 |  | 
 |   blocks_ = Tail(bs->cols, num_col_blocks - num_eliminate_blocks); | 
 |  | 
 |   std::set<std::pair<int, int>> block_pairs; | 
 |   for (int i = 0; i < blocks_.size(); ++i) { | 
 |     block_pairs.emplace(i, i); | 
 |   } | 
 |  | 
 |   int r = 0; | 
 |   while (r < num_row_blocks) { | 
 |     int e_block_id = bs->rows[r].cells.front().block_id; | 
 |     if (e_block_id >= num_eliminate_blocks) { | 
 |       break; | 
 |     } | 
 |     std::vector<int> f_blocks; | 
 |  | 
 |     // Add to the chunk until the first block in the row is | 
 |     // different than the one in the first row for the chunk. | 
 |     for (; r < num_row_blocks; ++r) { | 
 |       const CompressedRow& row = bs->rows[r]; | 
 |       if (row.cells.front().block_id != e_block_id) { | 
 |         break; | 
 |       } | 
 |  | 
 |       // Iterate over the blocks in the row, ignoring the first | 
 |       // block since it is the one to be eliminated. | 
 |       for (int c = 1; c < row.cells.size(); ++c) { | 
 |         const Cell& cell = row.cells[c]; | 
 |         f_blocks.push_back(cell.block_id - num_eliminate_blocks); | 
 |       } | 
 |     } | 
 |  | 
 |     sort(f_blocks.begin(), f_blocks.end()); | 
 |     f_blocks.erase(unique(f_blocks.begin(), f_blocks.end()), f_blocks.end()); | 
 |     for (int i = 0; i < f_blocks.size(); ++i) { | 
 |       for (int j = i + 1; j < f_blocks.size(); ++j) { | 
 |         block_pairs.emplace(f_blocks[i], f_blocks[j]); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Remaining rows do not contribute to the chunks and directly go | 
 |   // into the schur complement via an outer product. | 
 |   for (; r < num_row_blocks; ++r) { | 
 |     const CompressedRow& row = bs->rows[r]; | 
 |     CHECK_GE(row.cells.front().block_id, num_eliminate_blocks); | 
 |     for (int i = 0; i < row.cells.size(); ++i) { | 
 |       int r_block1_id = row.cells[i].block_id - num_eliminate_blocks; | 
 |       for (const auto& cell : row.cells) { | 
 |         int r_block2_id = cell.block_id - num_eliminate_blocks; | 
 |         if (r_block1_id <= r_block2_id) { | 
 |           block_pairs.emplace(r_block1_id, r_block2_id); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   set_lhs(std::make_unique<BlockRandomAccessSparseMatrix>( | 
 |       blocks_, block_pairs, options().context, options().num_threads)); | 
 |   ResizeRhs(lhs()->num_rows()); | 
 | } | 
 |  | 
 | LinearSolver::Summary SparseSchurComplementSolver::SolveReducedLinearSystem( | 
 |     const LinearSolver::PerSolveOptions& per_solve_options, double* solution) { | 
 |   if (options().type == ITERATIVE_SCHUR) { | 
 |     return SolveReducedLinearSystemUsingConjugateGradients(per_solve_options, | 
 |                                                            solution); | 
 |   } | 
 |  | 
 |   LinearSolver::Summary summary; | 
 |   summary.num_iterations = 0; | 
 |   summary.termination_type = LinearSolverTerminationType::SUCCESS; | 
 |   summary.message = "Success."; | 
 |  | 
 |   const TripletSparseMatrix* tsm = | 
 |       down_cast<const BlockRandomAccessSparseMatrix*>(lhs())->matrix(); | 
 |   if (tsm->num_rows() == 0) { | 
 |     return summary; | 
 |   } | 
 |  | 
 |   std::unique_ptr<CompressedRowSparseMatrix> lhs; | 
 |   const CompressedRowSparseMatrix::StorageType storage_type = | 
 |       sparse_cholesky_->StorageType(); | 
 |   if (storage_type == | 
 |       CompressedRowSparseMatrix::StorageType::UPPER_TRIANGULAR) { | 
 |     lhs = CompressedRowSparseMatrix::FromTripletSparseMatrix(*tsm); | 
 |     lhs->set_storage_type( | 
 |         CompressedRowSparseMatrix::StorageType::UPPER_TRIANGULAR); | 
 |   } else { | 
 |     lhs = CompressedRowSparseMatrix::FromTripletSparseMatrixTransposed(*tsm); | 
 |     lhs->set_storage_type( | 
 |         CompressedRowSparseMatrix::StorageType::LOWER_TRIANGULAR); | 
 |   } | 
 |  | 
 |   *lhs->mutable_col_blocks() = blocks_; | 
 |   *lhs->mutable_row_blocks() = blocks_; | 
 |  | 
 |   summary.num_iterations = 1; | 
 |   summary.termination_type = sparse_cholesky_->FactorAndSolve( | 
 |       lhs.get(), rhs().data(), solution, &summary.message); | 
 |   return summary; | 
 | } | 
 |  | 
 | LinearSolver::Summary | 
 | SparseSchurComplementSolver::SolveReducedLinearSystemUsingConjugateGradients( | 
 |     const LinearSolver::PerSolveOptions& per_solve_options, double* solution) { | 
 |   CHECK(options().use_explicit_schur_complement); | 
 |   const int num_rows = lhs()->num_rows(); | 
 |   // The case where there are no f blocks, and the system is block | 
 |   // diagonal. | 
 |   if (num_rows == 0) { | 
 |     LinearSolver::Summary summary; | 
 |     summary.num_iterations = 0; | 
 |     summary.termination_type = LinearSolverTerminationType::SUCCESS; | 
 |     summary.message = "Success."; | 
 |     return summary; | 
 |   } | 
 |  | 
 |   // Only SCHUR_JACOBI is supported over here right now. | 
 |   CHECK_EQ(options().preconditioner_type, SCHUR_JACOBI); | 
 |  | 
 |   if (preconditioner_ == nullptr) { | 
 |     preconditioner_ = std::make_unique<BlockRandomAccessDiagonalMatrix>( | 
 |         blocks_, options().context, options().num_threads); | 
 |   } | 
 |  | 
 |   auto* sc = down_cast<BlockRandomAccessSparseMatrix*>(mutable_lhs()); | 
 |  | 
 |   // Extract block diagonal from the Schur complement to construct the | 
 |   // schur_jacobi preconditioner. | 
 |   for (int i = 0; i < blocks_.size(); ++i) { | 
 |     const int block_size = blocks_[i].size; | 
 |  | 
 |     int sc_r, sc_c, sc_row_stride, sc_col_stride; | 
 |     CellInfo* sc_cell_info = | 
 |         sc->GetCell(i, i, &sc_r, &sc_c, &sc_row_stride, &sc_col_stride); | 
 |     CHECK(sc_cell_info != nullptr); | 
 |     MatrixRef sc_m(sc_cell_info->values, sc_row_stride, sc_col_stride); | 
 |  | 
 |     int pre_r, pre_c, pre_row_stride, pre_col_stride; | 
 |     CellInfo* pre_cell_info = preconditioner_->GetCell( | 
 |         i, i, &pre_r, &pre_c, &pre_row_stride, &pre_col_stride); | 
 |     CHECK(pre_cell_info != nullptr); | 
 |     MatrixRef pre_m(pre_cell_info->values, pre_row_stride, pre_col_stride); | 
 |  | 
 |     pre_m.block(pre_r, pre_c, block_size, block_size) = | 
 |         sc_m.block(sc_r, sc_c, block_size, block_size); | 
 |   } | 
 |   preconditioner_->Invert(); | 
 |  | 
 |   VectorRef(solution, num_rows).setZero(); | 
 |  | 
 |   auto lhs = std::make_unique<BlockRandomAccessSparseMatrixAdapter>(*sc); | 
 |   auto preconditioner = | 
 |       std::make_unique<BlockRandomAccessDiagonalMatrixAdapter>( | 
 |           *preconditioner_); | 
 |  | 
 |   ConjugateGradientsSolverOptions cg_options; | 
 |   cg_options.min_num_iterations = options().min_num_iterations; | 
 |   cg_options.max_num_iterations = options().max_num_iterations; | 
 |   cg_options.residual_reset_period = options().residual_reset_period; | 
 |   cg_options.q_tolerance = per_solve_options.q_tolerance; | 
 |   cg_options.r_tolerance = per_solve_options.r_tolerance; | 
 |  | 
 |   cg_solution_ = Vector::Zero(sc->num_rows()); | 
 |   for (int i = 0; i < 4; ++i) { | 
 |     if (scratch_[i] == nullptr) { | 
 |       scratch_[i] = new Vector(sc->num_rows()); | 
 |     } | 
 |   } | 
 |   auto summary = ConjugateGradientsSolver<Vector>( | 
 |       cg_options, *lhs, rhs(), *preconditioner, scratch_, cg_solution_); | 
 |   VectorRef(solution, sc->num_rows()) = cg_solution_; | 
 |   return summary; | 
 | } | 
 |  | 
 | }  // namespace ceres::internal |