| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2017 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 | // | 
 | // A simple C++ interface to the SuiteSparse and CHOLMOD libraries. | 
 |  | 
 | #ifndef CERES_INTERNAL_SUITESPARSE_H_ | 
 | #define CERES_INTERNAL_SUITESPARSE_H_ | 
 |  | 
 | // This include must come before any #ifndef check on Ceres compile options. | 
 | #include "ceres/internal/config.h" | 
 |  | 
 | #ifndef CERES_NO_SUITESPARSE | 
 |  | 
 | #include <cstring> | 
 | #include <memory> | 
 | #include <string> | 
 | #include <vector> | 
 |  | 
 | #include "SuiteSparseQR.hpp" | 
 | #include "ceres/block_structure.h" | 
 | #include "ceres/internal/disable_warnings.h" | 
 | #include "ceres/linear_solver.h" | 
 | #include "ceres/sparse_cholesky.h" | 
 | #include "cholmod.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | class CompressedRowSparseMatrix; | 
 | class TripletSparseMatrix; | 
 |  | 
 | // The raw CHOLMOD and SuiteSparseQR libraries have a slightly | 
 | // cumbersome c like calling format. This object abstracts it away and | 
 | // provides the user with a simpler interface. The methods here cannot | 
 | // be static as a cholmod_common object serves as a global variable | 
 | // for all cholmod function calls. | 
 | class CERES_NO_EXPORT SuiteSparse { | 
 |  public: | 
 |   SuiteSparse(); | 
 |   ~SuiteSparse(); | 
 |  | 
 |   // Functions for building cholmod_sparse objects from sparse | 
 |   // matrices stored in triplet form. The matrix A is not | 
 |   // modified. Called owns the result. | 
 |   cholmod_sparse* CreateSparseMatrix(TripletSparseMatrix* A); | 
 |  | 
 |   // This function works like CreateSparseMatrix, except that the | 
 |   // return value corresponds to A' rather than A. | 
 |   cholmod_sparse* CreateSparseMatrixTranspose(TripletSparseMatrix* A); | 
 |  | 
 |   // Create a cholmod_sparse wrapper around the contents of A. This is | 
 |   // a shallow object, which refers to the contents of A and does not | 
 |   // use the SuiteSparse machinery to allocate memory. | 
 |   cholmod_sparse CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A); | 
 |  | 
 |   // Create a cholmod_dense vector around the contents of the array x. | 
 |   // This is a shallow object, which refers to the contents of x and | 
 |   // does not use the SuiteSparse machinery to allocate memory. | 
 |   cholmod_dense CreateDenseVectorView(const double* x, int size); | 
 |  | 
 |   // Given a vector x, build a cholmod_dense vector of size out_size | 
 |   // with the first in_size entries copied from x. If x is nullptr, then | 
 |   // an all zeros vector is returned. Caller owns the result. | 
 |   cholmod_dense* CreateDenseVector(const double* x, int in_size, int out_size); | 
 |  | 
 |   // The matrix A is scaled using the matrix whose diagonal is the | 
 |   // vector scale. mode describes how scaling is applied. Possible | 
 |   // values are CHOLMOD_ROW for row scaling - diag(scale) * A, | 
 |   // CHOLMOD_COL for column scaling - A * diag(scale) and CHOLMOD_SYM | 
 |   // for symmetric scaling which scales both the rows and the columns | 
 |   // - diag(scale) * A * diag(scale). | 
 |   void Scale(cholmod_dense* scale, int mode, cholmod_sparse* A) { | 
 |     cholmod_scale(scale, mode, A, &cc_); | 
 |   } | 
 |  | 
 |   // Create and return a matrix m = A * A'. Caller owns the | 
 |   // result. The matrix A is not modified. | 
 |   cholmod_sparse* AATranspose(cholmod_sparse* A) { | 
 |     cholmod_sparse* m = cholmod_aat(A, nullptr, A->nrow, 1, &cc_); | 
 |     m->stype = 1;  // Pay attention to the upper triangular part. | 
 |     return m; | 
 |   } | 
 |  | 
 |   // y = alpha * A * x + beta * y. Only y is modified. | 
 |   void SparseDenseMultiply(cholmod_sparse* A, | 
 |                            double alpha, | 
 |                            double beta, | 
 |                            cholmod_dense* x, | 
 |                            cholmod_dense* y) { | 
 |     double alpha_[2] = {alpha, 0}; | 
 |     double beta_[2] = {beta, 0}; | 
 |     cholmod_sdmult(A, 0, alpha_, beta_, x, y, &cc_); | 
 |   } | 
 |  | 
 |   // Compute a symbolic factorization for A or AA' (if A is | 
 |   // unsymmetric). If ordering_type is NATURAL, then no fill reducing | 
 |   // ordering is computed, otherwise depending on the value of | 
 |   // ordering_type AMD or Nested Dissection is used to compute a fill | 
 |   // reducing ordering before the symbolic factorization is computed. | 
 |   // | 
 |   // A is not modified, only the pattern of non-zeros of A is used, | 
 |   // the actual numerical values in A are of no consequence. | 
 |   // | 
 |   // message contains an explanation of the failures if any. | 
 |   // | 
 |   // Caller owns the result. | 
 |   cholmod_factor* AnalyzeCholesky(cholmod_sparse* A, | 
 |                                   OrderingType ordering_type, | 
 |                                   std::string* message); | 
 |  | 
 |   // Block oriented version of AnalyzeCholesky. | 
 |   cholmod_factor* BlockAnalyzeCholesky(cholmod_sparse* A, | 
 |                                        OrderingType ordering_type, | 
 |                                        const std::vector<Block>& row_blocks, | 
 |                                        const std::vector<Block>& col_blocks, | 
 |                                        std::string* message); | 
 |  | 
 |   // If A is symmetric, then compute the symbolic Cholesky | 
 |   // factorization of A(ordering, ordering). If A is unsymmetric, then | 
 |   // compute the symbolic factorization of | 
 |   // A(ordering,:) A(ordering,:)'. | 
 |   // | 
 |   // A is not modified, only the pattern of non-zeros of A is used, | 
 |   // the actual numerical values in A are of no consequence. | 
 |   // | 
 |   // message contains an explanation of the failures if any. | 
 |   // | 
 |   // Caller owns the result. | 
 |   cholmod_factor* AnalyzeCholeskyWithGivenOrdering( | 
 |       cholmod_sparse* A, | 
 |       const std::vector<int>& ordering, | 
 |       std::string* message); | 
 |  | 
 |   // Use the symbolic factorization in L, to find the numerical | 
 |   // factorization for the matrix A or AA^T. Return true if | 
 |   // successful, false otherwise. L contains the numeric factorization | 
 |   // on return. | 
 |   // | 
 |   // message contains an explanation of the failures if any. | 
 |   LinearSolverTerminationType Cholesky(cholmod_sparse* A, | 
 |                                        cholmod_factor* L, | 
 |                                        std::string* message); | 
 |  | 
 |   // Given a Cholesky factorization of a matrix A = LL^T, solve the | 
 |   // linear system Ax = b, and return the result. If the Solve fails | 
 |   // nullptr is returned. Caller owns the result. | 
 |   // | 
 |   // message contains an explanation of the failures if any. | 
 |   cholmod_dense* Solve(cholmod_factor* L, | 
 |                        cholmod_dense* b, | 
 |                        std::string* message); | 
 |  | 
 |   // Find a fill reducing ordering. ordering is expected to be large | 
 |   // enough to hold the ordering. ordering_type must be AMD or NESDIS. | 
 |   bool Ordering(cholmod_sparse* matrix, | 
 |                 OrderingType ordering_type, | 
 |                 int* ordering); | 
 |  | 
 |   // Find the block oriented fill reducing ordering of a matrix A, | 
 |   // whose row and column blocks are given by row_blocks, and | 
 |   // col_blocks respectively. The matrix may or may not be | 
 |   // symmetric. The entries of col_blocks do not need to sum to the | 
 |   // number of columns in A. If this is the case, only the first | 
 |   // sum(col_blocks) are used to compute the ordering. | 
 |   // | 
 |   // By virtue of the modeling layer in Ceres being block oriented, | 
 |   // all the matrices used by Ceres are also block oriented. When | 
 |   // doing sparse direct factorization of these matrices the | 
 |   // fill-reducing ordering algorithms can either be run on the block | 
 |   // or the scalar form of these matrices. But since the underlying | 
 |   // matrices are block oriented, it is worth running the fill | 
 |   // reducing ordering on just the block structure of these matrices | 
 |   // and then lifting these block orderings to a full scalar | 
 |   // ordering. This preserves the block structure of the permuted | 
 |   // matrix, and exposes more of the super-nodal structure of the | 
 |   // matrix to the numerical factorization routines. | 
 |   bool BlockOrdering(const cholmod_sparse* A, | 
 |                      OrderingType ordering_type, | 
 |                      const std::vector<Block>& row_blocks, | 
 |                      const std::vector<Block>& col_blocks, | 
 |                      std::vector<int>* ordering); | 
 |  | 
 |   // Nested dissection is only available if SuiteSparse is compiled | 
 |   // with Metis support. | 
 |   static bool IsNestedDissectionAvailable(); | 
 |  | 
 |   // Find a fill reducing approximate minimum degree | 
 |   // ordering. constraints is an array which associates with each | 
 |   // column of the matrix an elimination group. i.e., all columns in | 
 |   // group 0 are eliminated first, all columns in group 1 are | 
 |   // eliminated next etc. This function finds a fill reducing ordering | 
 |   // that obeys these constraints. | 
 |   // | 
 |   // Calling ApproximateMinimumDegreeOrdering is equivalent to calling | 
 |   // ConstrainedApproximateMinimumDegreeOrdering with a constraint | 
 |   // array that puts all columns in the same elimination group. | 
 |   bool ConstrainedApproximateMinimumDegreeOrdering(cholmod_sparse* matrix, | 
 |                                                    int* constraints, | 
 |                                                    int* ordering); | 
 |  | 
 |   void Free(cholmod_sparse* m) { cholmod_free_sparse(&m, &cc_); } | 
 |   void Free(cholmod_dense* m) { cholmod_free_dense(&m, &cc_); } | 
 |   void Free(cholmod_factor* m) { cholmod_free_factor(&m, &cc_); } | 
 |  | 
 |   void Print(cholmod_sparse* m, const std::string& name) { | 
 |     cholmod_print_sparse(m, const_cast<char*>(name.c_str()), &cc_); | 
 |   } | 
 |  | 
 |   void Print(cholmod_dense* m, const std::string& name) { | 
 |     cholmod_print_dense(m, const_cast<char*>(name.c_str()), &cc_); | 
 |   } | 
 |  | 
 |   void Print(cholmod_triplet* m, const std::string& name) { | 
 |     cholmod_print_triplet(m, const_cast<char*>(name.c_str()), &cc_); | 
 |   } | 
 |  | 
 |   cholmod_common* mutable_cc() { return &cc_; } | 
 |  | 
 |  private: | 
 |   cholmod_common cc_; | 
 | }; | 
 |  | 
 | class CERES_NO_EXPORT SuiteSparseCholesky final : public SparseCholesky { | 
 |  public: | 
 |   static std::unique_ptr<SparseCholesky> Create(OrderingType ordering_type); | 
 |  | 
 |   // SparseCholesky interface. | 
 |   ~SuiteSparseCholesky() override; | 
 |   CompressedRowSparseMatrix::StorageType StorageType() const final; | 
 |   LinearSolverTerminationType Factorize(CompressedRowSparseMatrix* lhs, | 
 |                                         std::string* message) final; | 
 |   LinearSolverTerminationType Solve(const double* rhs, | 
 |                                     double* solution, | 
 |                                     std::string* message) final; | 
 |  | 
 |  private: | 
 |   explicit SuiteSparseCholesky(const OrderingType ordering_type); | 
 |  | 
 |   const OrderingType ordering_type_; | 
 |   SuiteSparse ss_; | 
 |   cholmod_factor* factor_; | 
 | }; | 
 |  | 
 | }  // namespace ceres::internal | 
 |  | 
 | #include "ceres/internal/reenable_warnings.h" | 
 |  | 
 | #else  // CERES_NO_SUITESPARSE | 
 |  | 
 | using cholmod_factor = void; | 
 |  | 
 | #include "ceres/internal/disable_warnings.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | class CERES_NO_EXPORT SuiteSparse { | 
 |  public: | 
 |   // Nested dissection is only available if SuiteSparse is compiled | 
 |   // with Metis support. | 
 |   static bool IsNestedDissectionAvailable() { return false; } | 
 |   void Free(void* /*arg*/) {} | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres | 
 |  | 
 | #include "ceres/internal/reenable_warnings.h" | 
 |  | 
 | #endif  // CERES_NO_SUITESPARSE | 
 |  | 
 | #endif  // CERES_INTERNAL_SUITESPARSE_H_ |