blob: 2b6e8260286585b3a60d8b2ea1d883d7e497380b [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: mierle@gmail.com (Keir Mierle)
// sameeragarwal@google.com (Sameer Agarwal)
// thadh@gmail.com (Thad Hughes)
//
// This numeric diff implementation differs from the one found in
// numeric_diff_cost_function.h by supporting numericdiff on cost
// functions with variable numbers of parameters with variable
// sizes. With the other implementation, all the sizes (both the
// number of parameter blocks and the size of each block) must be
// fixed at compile time.
//
// The functor API differs slightly from the API for fixed size
// numeric diff; the expected interface for the cost functors is:
//
// struct MyCostFunctor {
// template<typename T>
// bool operator()(double const* const* parameters, double* residuals) const {
// // Use parameters[i] to access the i'th parameter block.
// }
// }
//
// Since the sizing of the parameters is done at runtime, you must
// also specify the sizes after creating the
// DynamicNumericDiffCostFunction. For example:
//
// DynamicAutoDiffCostFunction<MyCostFunctor, CENTRAL> cost_function(
// new MyCostFunctor());
// cost_function.AddParameterBlock(5);
// cost_function.AddParameterBlock(10);
// cost_function.SetNumResiduals(21);
#ifndef CERES_PUBLIC_DYNAMIC_NUMERIC_DIFF_COST_FUNCTION_H_
#define CERES_PUBLIC_DYNAMIC_NUMERIC_DIFF_COST_FUNCTION_H_
#include <cmath>
#include <numeric>
#include <vector>
#include "ceres/cost_function.h"
#include "ceres/internal/scoped_ptr.h"
#include "ceres/internal/eigen.h"
#include "ceres/internal/numeric_diff.h"
#include "glog/logging.h"
namespace ceres {
template <typename CostFunctor, NumericDiffMethod method = CENTRAL>
class DynamicNumericDiffCostFunction : public CostFunction {
public:
explicit DynamicNumericDiffCostFunction(const CostFunctor* functor,
Ownership ownership = TAKE_OWNERSHIP,
double relative_step_size = 1e-6)
: functor_(functor),
ownership_(ownership),
relative_step_size_(relative_step_size) {
}
virtual ~DynamicNumericDiffCostFunction() {
if (ownership_ != TAKE_OWNERSHIP) {
functor_.release();
}
}
void AddParameterBlock(int size) {
mutable_parameter_block_sizes()->push_back(size);
}
void SetNumResiduals(int num_residuals) {
set_num_residuals(num_residuals);
}
virtual bool Evaluate(double const* const* parameters,
double* residuals,
double** jacobians) const {
CHECK_GT(num_residuals(), 0)
<< "You must call DynamicNumericDiffCostFunction::SetNumResiduals() "
<< "before DynamicNumericDiffCostFunction::Evaluate().";
const vector<int32>& block_sizes = parameter_block_sizes();
CHECK(!block_sizes.empty())
<< "You must call DynamicNumericDiffCostFunction::AddParameterBlock() "
<< "before DynamicNumericDiffCostFunction::Evaluate().";
const bool status = EvaluateCostFunctor(parameters, residuals);
if (jacobians == NULL || !status) {
return status;
}
// Create local space for a copy of the parameters which will get mutated.
int parameters_size = accumulate(block_sizes.begin(), block_sizes.end(), 0);
vector<double> parameters_copy(parameters_size);
vector<double*> parameters_references_copy(block_sizes.size());
parameters_references_copy[0] = &parameters_copy[0];
for (int block = 1; block < block_sizes.size(); ++block) {
parameters_references_copy[block] = parameters_references_copy[block - 1]
+ block_sizes[block - 1];
}
// Copy the parameters into the local temp space.
for (int block = 0; block < block_sizes.size(); ++block) {
memcpy(parameters_references_copy[block],
parameters[block],
block_sizes[block] * sizeof(*parameters[block]));
}
for (int block = 0; block < block_sizes.size(); ++block) {
if (jacobians[block] != NULL &&
!EvaluateJacobianForParameterBlock(block_sizes[block],
block,
relative_step_size_,
residuals,
&parameters_references_copy[0],
jacobians)) {
return false;
}
}
return true;
}
private:
bool EvaluateJacobianForParameterBlock(const int parameter_block_size,
const int parameter_block,
const double relative_step_size,
double const* residuals_at_eval_point,
double** parameters,
double** jacobians) const {
using Eigen::Map;
using Eigen::Matrix;
using Eigen::Dynamic;
using Eigen::RowMajor;
typedef Matrix<double, Dynamic, 1> ResidualVector;
typedef Matrix<double, Dynamic, 1> ParameterVector;
typedef Matrix<double, Dynamic, Dynamic, RowMajor> JacobianMatrix;
int num_residuals = this->num_residuals();
Map<JacobianMatrix> parameter_jacobian(jacobians[parameter_block],
num_residuals,
parameter_block_size);
// Mutate one element at a time and then restore.
Map<ParameterVector> x_plus_delta(parameters[parameter_block],
parameter_block_size);
ParameterVector x(x_plus_delta);
ParameterVector step_size = x.array().abs() * relative_step_size;
// To handle cases where a paremeter is exactly zero, instead use
// the mean step_size for the other dimensions.
double fallback_step_size = step_size.sum() / step_size.rows();
if (fallback_step_size == 0.0) {
// If all the parameters are zero, there's no good answer. Use the given
// relative step_size as absolute step_size and hope for the best.
fallback_step_size = relative_step_size;
}
// For each parameter in the parameter block, use finite
// differences to compute the derivative for that parameter.
for (int j = 0; j < parameter_block_size; ++j) {
if (step_size(j) == 0.0) {
// The parameter is exactly zero, so compromise and use the
// mean step_size from the other parameters. This can break in
// many cases, but it's hard to pick a good number without
// problem specific knowledge.
step_size(j) = fallback_step_size;
}
x_plus_delta(j) = x(j) + step_size(j);
ResidualVector residuals(num_residuals);
if (!EvaluateCostFunctor(parameters, &residuals[0])) {
// Something went wrong; bail.
return false;
}
// Compute this column of the jacobian in 3 steps:
// 1. Store residuals for the forward part.
// 2. Subtract residuals for the backward (or 0) part.
// 3. Divide out the run.
parameter_jacobian.col(j).matrix() = residuals;
double one_over_h = 1 / step_size(j);
if (method == CENTRAL) {
// Compute the function on the other side of x(j).
x_plus_delta(j) = x(j) - step_size(j);
if (!EvaluateCostFunctor(parameters, &residuals[0])) {
// Something went wrong; bail.
return false;
}
parameter_jacobian.col(j) -= residuals;
one_over_h /= 2;
} else {
// Forward difference only; reuse existing residuals evaluation.
parameter_jacobian.col(j) -=
Map<const ResidualVector>(residuals_at_eval_point, num_residuals);
}
x_plus_delta(j) = x(j); // Restore x_plus_delta.
// Divide out the run to get slope.
parameter_jacobian.col(j) *= one_over_h;
}
return true;
}
bool EvaluateCostFunctor(double const* const* parameters,
double* residuals) const {
return EvaluateCostFunctorImpl(functor_.get(),
parameters,
residuals,
functor_.get());
}
// Helper templates to allow evaluation of a functor or a
// CostFunction.
bool EvaluateCostFunctorImpl(const CostFunctor* functor,
double const* const* parameters,
double* residuals,
const void* /* NOT USED */) const {
return (*functor)(parameters, residuals);
}
bool EvaluateCostFunctorImpl(const CostFunctor* functor,
double const* const* parameters,
double* residuals,
const CostFunction* /* NOT USED */) const {
return functor->Evaluate(parameters, residuals, NULL);
}
internal::scoped_ptr<const CostFunctor> functor_;
Ownership ownership_;
const double relative_step_size_;
};
} // namespace ceres
#endif // CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_