| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2012 Google Inc. All rights reserved. |
| // http://code.google.com/p/ceres-solver/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: strandmark@google.com (Petter Strandmark) |
| |
| // This include must come before any #ifndef check on Ceres compile options. |
| #include "ceres/internal/port.h" |
| |
| #ifndef CERES_NO_CXSPARSE |
| |
| #include "ceres/cxsparse.h" |
| |
| #include <vector> |
| #include "ceres/compressed_col_sparse_matrix_utils.h" |
| #include "ceres/compressed_row_sparse_matrix.h" |
| #include "ceres/internal/port.h" |
| #include "ceres/triplet_sparse_matrix.h" |
| #include "glog/logging.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| CXSparse::CXSparse() : scratch_(NULL), scratch_size_(0) { |
| } |
| |
| CXSparse::~CXSparse() { |
| if (scratch_size_ > 0) { |
| cs_di_free(scratch_); |
| } |
| } |
| |
| |
| bool CXSparse::SolveCholesky(cs_di* A, |
| cs_dis* symbolic_factorization, |
| double* b) { |
| // Make sure we have enough scratch space available. |
| if (scratch_size_ < A->n) { |
| if (scratch_size_ > 0) { |
| cs_di_free(scratch_); |
| } |
| scratch_ = |
| reinterpret_cast<CS_ENTRY*>(cs_di_malloc(A->n, sizeof(CS_ENTRY))); |
| scratch_size_ = A->n; |
| } |
| |
| // Solve using Cholesky factorization |
| csn* numeric_factorization = cs_di_chol(A, symbolic_factorization); |
| if (numeric_factorization == NULL) { |
| LOG(WARNING) << "Cholesky factorization failed."; |
| return false; |
| } |
| |
| // When the Cholesky factorization succeeded, these methods are |
| // guaranteed to succeeded as well. In the comments below, "x" |
| // refers to the scratch space. |
| // |
| // Set x = P * b. |
| cs_di_ipvec(symbolic_factorization->pinv, b, scratch_, A->n); |
| // Set x = L \ x. |
| cs_di_lsolve(numeric_factorization->L, scratch_); |
| // Set x = L' \ x. |
| cs_di_ltsolve(numeric_factorization->L, scratch_); |
| // Set b = P' * x. |
| cs_di_pvec(symbolic_factorization->pinv, scratch_, b, A->n); |
| |
| // Free Cholesky factorization. |
| cs_di_nfree(numeric_factorization); |
| return true; |
| } |
| |
| cs_dis* CXSparse::AnalyzeCholesky(cs_di* A) { |
| // order = 1 for Cholesky factorization. |
| return cs_schol(1, A); |
| } |
| |
| cs_dis* CXSparse::AnalyzeCholeskyWithNaturalOrdering(cs_di* A) { |
| // order = 0 for Natural ordering. |
| return cs_schol(0, A); |
| } |
| |
| cs_dis* CXSparse::BlockAnalyzeCholesky(cs_di* A, |
| const vector<int>& row_blocks, |
| const vector<int>& col_blocks) { |
| const int num_row_blocks = row_blocks.size(); |
| const int num_col_blocks = col_blocks.size(); |
| |
| vector<int> block_rows; |
| vector<int> block_cols; |
| CompressedColumnScalarMatrixToBlockMatrix(A->i, |
| A->p, |
| row_blocks, |
| col_blocks, |
| &block_rows, |
| &block_cols); |
| cs_di block_matrix; |
| block_matrix.m = num_row_blocks; |
| block_matrix.n = num_col_blocks; |
| block_matrix.nz = -1; |
| block_matrix.nzmax = block_rows.size(); |
| block_matrix.p = &block_cols[0]; |
| block_matrix.i = &block_rows[0]; |
| block_matrix.x = NULL; |
| |
| int* ordering = cs_amd(1, &block_matrix); |
| vector<int> block_ordering(num_row_blocks, -1); |
| copy(ordering, ordering + num_row_blocks, &block_ordering[0]); |
| cs_free(ordering); |
| |
| vector<int> scalar_ordering; |
| BlockOrderingToScalarOrdering(row_blocks, block_ordering, &scalar_ordering); |
| |
| cs_dis* symbolic_factorization = |
| reinterpret_cast<cs_dis*>(cs_calloc(1, sizeof(cs_dis))); |
| symbolic_factorization->pinv = cs_pinv(&scalar_ordering[0], A->n); |
| cs* permuted_A = cs_symperm(A, symbolic_factorization->pinv, 0); |
| |
| symbolic_factorization->parent = cs_etree(permuted_A, 0); |
| int* postordering = cs_post(symbolic_factorization->parent, A->n); |
| int* column_counts = cs_counts(permuted_A, |
| symbolic_factorization->parent, |
| postordering, |
| 0); |
| cs_free(postordering); |
| cs_spfree(permuted_A); |
| |
| symbolic_factorization->cp = (int*) cs_malloc(A->n+1, sizeof(int)); |
| symbolic_factorization->lnz = cs_cumsum(symbolic_factorization->cp, |
| column_counts, |
| A->n); |
| symbolic_factorization->unz = symbolic_factorization->lnz; |
| |
| cs_free(column_counts); |
| |
| if (symbolic_factorization->lnz < 0) { |
| cs_sfree(symbolic_factorization); |
| symbolic_factorization = NULL; |
| } |
| |
| return symbolic_factorization; |
| } |
| |
| cs_di CXSparse::CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A) { |
| cs_di At; |
| At.m = A->num_cols(); |
| At.n = A->num_rows(); |
| At.nz = -1; |
| At.nzmax = A->num_nonzeros(); |
| At.p = A->mutable_rows(); |
| At.i = A->mutable_cols(); |
| At.x = A->mutable_values(); |
| return At; |
| } |
| |
| cs_di* CXSparse::CreateSparseMatrix(TripletSparseMatrix* tsm) { |
| cs_di_sparse tsm_wrapper; |
| tsm_wrapper.nzmax = tsm->num_nonzeros(); |
| tsm_wrapper.nz = tsm->num_nonzeros(); |
| tsm_wrapper.m = tsm->num_rows(); |
| tsm_wrapper.n = tsm->num_cols(); |
| tsm_wrapper.p = tsm->mutable_cols(); |
| tsm_wrapper.i = tsm->mutable_rows(); |
| tsm_wrapper.x = tsm->mutable_values(); |
| |
| return cs_compress(&tsm_wrapper); |
| } |
| |
| void CXSparse::ApproximateMinimumDegreeOrdering(cs_di* A, int* ordering) { |
| int* cs_ordering = cs_amd(1, A); |
| copy(cs_ordering, cs_ordering + A->m, ordering); |
| cs_free(cs_ordering); |
| } |
| |
| cs_di* CXSparse::TransposeMatrix(cs_di* A) { |
| return cs_di_transpose(A, 1); |
| } |
| |
| cs_di* CXSparse::MatrixMatrixMultiply(cs_di* A, cs_di* B) { |
| return cs_di_multiply(A, B); |
| } |
| |
| void CXSparse::Free(cs_di* sparse_matrix) { |
| cs_di_spfree(sparse_matrix); |
| } |
| |
| void CXSparse::Free(cs_dis* symbolic_factorization) { |
| cs_di_sfree(symbolic_factorization); |
| } |
| |
| } // namespace internal |
| } // namespace ceres |
| |
| #endif // CERES_NO_CXSPARSE |