|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2013 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/incomplete_lq_factorization.h" | 
|  |  | 
|  | #include <vector> | 
|  | #include <utility> | 
|  | #include <cmath> | 
|  | #include "ceres/compressed_row_sparse_matrix.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/internal/port.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | // Normalize a row and return it's norm. | 
|  | inline double NormalizeRow(const int row, CompressedRowSparseMatrix* matrix) { | 
|  | const int row_begin =  matrix->rows()[row]; | 
|  | const int row_end = matrix->rows()[row + 1]; | 
|  |  | 
|  | double* values = matrix->mutable_values(); | 
|  | double norm = 0.0; | 
|  | for (int i =  row_begin; i < row_end; ++i) { | 
|  | norm += values[i] * values[i]; | 
|  | } | 
|  |  | 
|  | norm = sqrt(norm); | 
|  | const double inverse_norm = 1.0 / norm; | 
|  | for (int i = row_begin; i < row_end; ++i) { | 
|  | values[i] *= inverse_norm; | 
|  | } | 
|  |  | 
|  | return norm; | 
|  | } | 
|  |  | 
|  | // Compute a(row_a,:) * b(row_b, :)' | 
|  | inline double RowDotProduct(const CompressedRowSparseMatrix& a, | 
|  | const int row_a, | 
|  | const CompressedRowSparseMatrix& b, | 
|  | const int row_b) { | 
|  | const int* a_rows = a.rows(); | 
|  | const int* a_cols = a.cols(); | 
|  | const double* a_values = a.values(); | 
|  |  | 
|  | const int* b_rows = b.rows(); | 
|  | const int* b_cols = b.cols(); | 
|  | const double* b_values = b.values(); | 
|  |  | 
|  | const int row_a_end = a_rows[row_a + 1]; | 
|  | const int row_b_end = b_rows[row_b + 1]; | 
|  |  | 
|  | int idx_a = a_rows[row_a]; | 
|  | int idx_b = b_rows[row_b]; | 
|  | double dot_product = 0.0; | 
|  | while (idx_a < row_a_end && idx_b < row_b_end) { | 
|  | if (a_cols[idx_a] == b_cols[idx_b]) { | 
|  | dot_product += a_values[idx_a++] * b_values[idx_b++]; | 
|  | } | 
|  |  | 
|  | while (a_cols[idx_a] < b_cols[idx_b] && idx_a < row_a_end) { | 
|  | ++idx_a; | 
|  | } | 
|  |  | 
|  | while (a_cols[idx_a] > b_cols[idx_b] && idx_b < row_b_end) { | 
|  | ++idx_b; | 
|  | } | 
|  | } | 
|  |  | 
|  | return dot_product; | 
|  | } | 
|  |  | 
|  | struct SecondGreaterThan { | 
|  | public: | 
|  | bool operator()(const pair<int, double>& lhs, | 
|  | const pair<int, double>& rhs) const { | 
|  | return (fabs(lhs.second) > fabs(rhs.second)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // In the row vector dense_row(0:num_cols), drop values smaller than | 
|  | // the max_value * drop_tolerance. Of the remaining non-zero values, | 
|  | // choose at most level_of_fill values and then add the resulting row | 
|  | // vector to matrix. | 
|  |  | 
|  | void DropEntriesAndAddRow(const Vector& dense_row, | 
|  | const int num_entries, | 
|  | const int level_of_fill, | 
|  | const double drop_tolerance, | 
|  | vector<pair<int, double> >* scratch, | 
|  | CompressedRowSparseMatrix* matrix) { | 
|  | int* rows = matrix->mutable_rows(); | 
|  | int* cols = matrix->mutable_cols(); | 
|  | double* values = matrix->mutable_values(); | 
|  | int num_nonzeros = rows[matrix->num_rows()]; | 
|  |  | 
|  | if (num_entries == 0) { | 
|  | matrix->set_num_rows(matrix->num_rows() + 1); | 
|  | rows[matrix->num_rows()] = num_nonzeros; | 
|  | return; | 
|  | } | 
|  |  | 
|  | const double max_value = dense_row.head(num_entries).cwiseAbs().maxCoeff(); | 
|  | const double threshold = drop_tolerance * max_value; | 
|  |  | 
|  | int scratch_count = 0; | 
|  | for (int i = 0; i < num_entries; ++i) { | 
|  | if (fabs(dense_row[i]) > threshold) { | 
|  | pair<int, double>& entry = (*scratch)[scratch_count]; | 
|  | entry.first = i; | 
|  | entry.second = dense_row[i]; | 
|  | ++scratch_count; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (scratch_count > level_of_fill) { | 
|  | nth_element(scratch->begin(), | 
|  | scratch->begin() + level_of_fill, | 
|  | scratch->begin() + scratch_count, | 
|  | SecondGreaterThan()); | 
|  | scratch_count = level_of_fill; | 
|  | sort(scratch->begin(), scratch->begin() + scratch_count); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < scratch_count; ++i) { | 
|  | const pair<int, double>& entry = (*scratch)[i]; | 
|  | cols[num_nonzeros] = entry.first; | 
|  | values[num_nonzeros] = entry.second; | 
|  | ++num_nonzeros; | 
|  | } | 
|  |  | 
|  | matrix->set_num_rows(matrix->num_rows() + 1); | 
|  | rows[matrix->num_rows()] = num_nonzeros; | 
|  | } | 
|  |  | 
|  | // Saad's Incomplete LQ factorization algorithm. | 
|  | CompressedRowSparseMatrix* IncompleteLQFactorization( | 
|  | const CompressedRowSparseMatrix& matrix, | 
|  | const int l_level_of_fill, | 
|  | const double l_drop_tolerance, | 
|  | const int q_level_of_fill, | 
|  | const double q_drop_tolerance) { | 
|  | const int num_rows = matrix.num_rows(); | 
|  | const int num_cols = matrix.num_cols(); | 
|  | const int* rows = matrix.rows(); | 
|  | const int* cols = matrix.cols(); | 
|  | const double* values = matrix.values(); | 
|  |  | 
|  | CompressedRowSparseMatrix* l = | 
|  | new CompressedRowSparseMatrix(num_rows, | 
|  | num_rows, | 
|  | l_level_of_fill * num_rows); | 
|  | l->set_num_rows(0); | 
|  |  | 
|  | CompressedRowSparseMatrix q(num_rows, num_cols, q_level_of_fill * num_rows); | 
|  | q.set_num_rows(0); | 
|  |  | 
|  | int* l_rows = l->mutable_rows(); | 
|  | int* l_cols = l->mutable_cols(); | 
|  | double* l_values = l->mutable_values(); | 
|  |  | 
|  | int* q_rows = q.mutable_rows(); | 
|  | int* q_cols = q.mutable_cols(); | 
|  | double* q_values = q.mutable_values(); | 
|  |  | 
|  | Vector l_i(num_rows); | 
|  | Vector q_i(num_cols); | 
|  | vector<pair<int, double> > scratch(num_cols); | 
|  | for (int i = 0; i < num_rows; ++i) { | 
|  | // l_i = q * matrix(i,:)'); | 
|  | l_i.setZero(); | 
|  | for (int j = 0; j < i; ++j) { | 
|  | l_i(j) = RowDotProduct(matrix, i, q, j); | 
|  | } | 
|  | DropEntriesAndAddRow(l_i, | 
|  | i, | 
|  | l_level_of_fill, | 
|  | l_drop_tolerance, | 
|  | &scratch, | 
|  | l); | 
|  |  | 
|  | // q_i = matrix(i,:) - q(0:i-1,:) * l_i); | 
|  | q_i.setZero(); | 
|  | for (int idx = rows[i]; idx < rows[i + 1]; ++idx) { | 
|  | q_i(cols[idx]) = values[idx]; | 
|  | } | 
|  |  | 
|  | for (int j = l_rows[i]; j < l_rows[i + 1]; ++j) { | 
|  | const int r = l_cols[j]; | 
|  | const double lij = l_values[j]; | 
|  | for (int idx = q_rows[r]; idx < q_rows[r + 1]; ++idx) { | 
|  | q_i(q_cols[idx]) -= lij * q_values[idx]; | 
|  | } | 
|  | } | 
|  | DropEntriesAndAddRow(q_i, | 
|  | num_cols, | 
|  | q_level_of_fill, | 
|  | q_drop_tolerance, | 
|  | &scratch, | 
|  | &q); | 
|  |  | 
|  | // lii = |qi| | 
|  | l_cols[l->num_nonzeros()] = i; | 
|  | l_values[l->num_nonzeros()] = NormalizeRow(i, &q); | 
|  | l_rows[l->num_rows()] += 1; | 
|  | } | 
|  |  | 
|  | return l; | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |