| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2019 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: tbennun@gmail.com (Tal Ben-Nun) |
| // |
| |
| #ifndef CERES_PUBLIC_NUMERIC_DIFF_OPTIONS_H_ |
| #define CERES_PUBLIC_NUMERIC_DIFF_OPTIONS_H_ |
| |
| #include "ceres/internal/port.h" |
| |
| namespace ceres { |
| |
| // Options pertaining to numeric differentiation (e.g., convergence criteria, |
| // step sizes). |
| struct CERES_EXPORT NumericDiffOptions { |
| // Numeric differentiation step size (multiplied by parameter block's |
| // order of magnitude). If parameters are close to zero, the step size |
| // is set to sqrt(machine_epsilon). |
| double relative_step_size = 1e-6; |
| |
| // Initial step size for Ridders adaptive numeric differentiation (multiplied |
| // by parameter block's order of magnitude). |
| // If parameters are close to zero, Ridders' method sets the step size |
| // directly to this value. This parameter is separate from |
| // "relative_step_size" in order to set a different default value. |
| // |
| // Note: For Ridders' method to converge, the step size should be initialized |
| // to a value that is large enough to produce a significant change in the |
| // function. As the derivative is estimated, the step size decreases. |
| double ridders_relative_initial_step_size = 1e-2; |
| |
| // Maximal number of adaptive extrapolations (sampling) in Ridders' method. |
| int max_num_ridders_extrapolations = 10; |
| |
| // Convergence criterion on extrapolation error for Ridders adaptive |
| // differentiation. The available error estimation methods are defined in |
| // NumericDiffErrorType and set in the "ridders_error_method" field. |
| double ridders_epsilon = 1e-12; |
| |
| // The factor in which to shrink the step size with each extrapolation in |
| // Ridders' method. |
| double ridders_step_shrink_factor = 2.0; |
| }; |
| |
| } // namespace ceres |
| |
| #endif // CERES_PUBLIC_NUMERIC_DIFF_OPTIONS_H_ |