| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2015 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| // |
| // An iterative solver for solving the Schur complement/reduced camera |
| // linear system that arise in SfM problems. |
| |
| #ifndef CERES_INTERNAL_IMPLICIT_SCHUR_COMPLEMENT_H_ |
| #define CERES_INTERNAL_IMPLICIT_SCHUR_COMPLEMENT_H_ |
| |
| #include <memory> |
| |
| #include "ceres/internal/eigen.h" |
| #include "ceres/internal/port.h" |
| #include "ceres/linear_operator.h" |
| #include "ceres/linear_solver.h" |
| #include "ceres/partitioned_matrix_view.h" |
| #include "ceres/types.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| class BlockSparseMatrix; |
| |
| // This class implements various linear algebraic operations related |
| // to the Schur complement without explicitly forming it. |
| // |
| // |
| // Given a reactangular linear system Ax = b, where |
| // |
| // A = [E F] |
| // |
| // The normal equations are given by |
| // |
| // A'Ax = A'b |
| // |
| // |E'E E'F||y| = |E'b| |
| // |F'E F'F||z| |F'b| |
| // |
| // and the Schur complement system is given by |
| // |
| // [F'F - F'E (E'E)^-1 E'F] z = F'b - F'E (E'E)^-1 E'b |
| // |
| // Now if we wish to solve Ax = b in the least squares sense, one way |
| // is to form this Schur complement system and solve it using |
| // Preconditioned Conjugate Gradients. |
| // |
| // The key operation in a conjugate gradient solver is the evaluation of the |
| // matrix vector product with the Schur complement |
| // |
| // S = F'F - F'E (E'E)^-1 E'F |
| // |
| // It is straightforward to see that matrix vector products with S can |
| // be evaluated without storing S in memory. Instead, given (E'E)^-1 |
| // (which for our purposes is an easily inverted block diagonal |
| // matrix), it can be done in terms of matrix vector products with E, |
| // F and (E'E)^-1. This class implements this functionality and other |
| // auxilliary bits needed to implement a CG solver on the Schur |
| // complement using the PartitionedMatrixView object. |
| // |
| // THREAD SAFETY: This class is nqot thread safe. In particular, the |
| // RightMultiply (and the LeftMultiply) methods are not thread safe as |
| // they depend on mutable arrays used for the temporaries needed to |
| // compute the product y += Sx; |
| class CERES_EXPORT_INTERNAL ImplicitSchurComplement : public LinearOperator { |
| public: |
| // num_eliminate_blocks is the number of E blocks in the matrix |
| // A. |
| // |
| // preconditioner indicates whether the inverse of the matrix F'F |
| // should be computed or not as a preconditioner for the Schur |
| // Complement. |
| // |
| // TODO(sameeragarwal): Get rid of the two bools below and replace |
| // them with enums. |
| explicit ImplicitSchurComplement(const LinearSolver::Options& options); |
| virtual ~ImplicitSchurComplement(); |
| |
| // Initialize the Schur complement for a linear least squares |
| // problem of the form |
| // |
| // |A | x = |b| |
| // |diag(D)| |0| |
| // |
| // If D is null, then it is treated as a zero dimensional matrix. It |
| // is important that the matrix A have a BlockStructure object |
| // associated with it and has a block structure that is compatible |
| // with the SchurComplement solver. |
| void Init(const BlockSparseMatrix& A, const double* D, const double* b); |
| |
| // y += Sx, where S is the Schur complement. |
| void RightMultiply(const double* x, double* y) const final; |
| |
| // The Schur complement is a symmetric positive definite matrix, |
| // thus the left and right multiply operators are the same. |
| void LeftMultiply(const double* x, double* y) const final { |
| RightMultiply(x, y); |
| } |
| |
| // y = (E'E)^-1 (E'b - E'F x). Given an estimate of the solution to |
| // the Schur complement system, this method computes the value of |
| // the e_block variables that were eliminated to form the Schur |
| // complement. |
| void BackSubstitute(const double* x, double* y); |
| |
| int num_rows() const final { return A_->num_cols_f(); } |
| int num_cols() const final { return A_->num_cols_f(); } |
| const Vector& rhs() const { return rhs_; } |
| |
| const BlockSparseMatrix* block_diagonal_EtE_inverse() const { |
| return block_diagonal_EtE_inverse_.get(); |
| } |
| |
| const BlockSparseMatrix* block_diagonal_FtF_inverse() const { |
| return block_diagonal_FtF_inverse_.get(); |
| } |
| |
| private: |
| void AddDiagonalAndInvert(const double* D, BlockSparseMatrix* matrix); |
| void UpdateRhs(); |
| |
| const LinearSolver::Options& options_; |
| |
| std::unique_ptr<PartitionedMatrixViewBase> A_; |
| const double* D_; |
| const double* b_; |
| |
| std::unique_ptr<BlockSparseMatrix> block_diagonal_EtE_inverse_; |
| std::unique_ptr<BlockSparseMatrix> block_diagonal_FtF_inverse_; |
| |
| Vector rhs_; |
| |
| // Temporary storage vectors used to implement RightMultiply. |
| mutable Vector tmp_rows_; |
| mutable Vector tmp_e_cols_; |
| mutable Vector tmp_e_cols_2_; |
| mutable Vector tmp_f_cols_; |
| }; |
| |
| } // namespace internal |
| } // namespace ceres |
| |
| #endif // CERES_INTERNAL_IMPLICIT_SCHUR_COMPLEMENT_H_ |