| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2015 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/levenberg_marquardt_strategy.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| |
| #include "Eigen/Core" |
| #include "ceres/array_utils.h" |
| #include "ceres/internal/eigen.h" |
| #include "ceres/linear_least_squares_problems.h" |
| #include "ceres/linear_solver.h" |
| #include "ceres/sparse_matrix.h" |
| #include "ceres/trust_region_strategy.h" |
| #include "ceres/types.h" |
| #include "glog/logging.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| LevenbergMarquardtStrategy::LevenbergMarquardtStrategy( |
| const TrustRegionStrategy::Options& options) |
| : linear_solver_(options.linear_solver), |
| radius_(options.initial_radius), |
| max_radius_(options.max_radius), |
| min_diagonal_(options.min_lm_diagonal), |
| max_diagonal_(options.max_lm_diagonal), |
| decrease_factor_(2.0), |
| reuse_diagonal_(false) { |
| CHECK(linear_solver_ != nullptr); |
| CHECK_GT(min_diagonal_, 0.0); |
| CHECK_LE(min_diagonal_, max_diagonal_); |
| CHECK_GT(max_radius_, 0.0); |
| } |
| |
| LevenbergMarquardtStrategy::~LevenbergMarquardtStrategy() {} |
| |
| TrustRegionStrategy::Summary LevenbergMarquardtStrategy::ComputeStep( |
| const TrustRegionStrategy::PerSolveOptions& per_solve_options, |
| SparseMatrix* jacobian, |
| const double* residuals, |
| double* step) { |
| CHECK(jacobian != nullptr); |
| CHECK(residuals != nullptr); |
| CHECK(step != nullptr); |
| |
| const int num_parameters = jacobian->num_cols(); |
| if (!reuse_diagonal_) { |
| if (diagonal_.rows() != num_parameters) { |
| diagonal_.resize(num_parameters, 1); |
| } |
| |
| jacobian->SquaredColumnNorm(diagonal_.data()); |
| for (int i = 0; i < num_parameters; ++i) { |
| diagonal_[i] = |
| std::min(std::max(diagonal_[i], min_diagonal_), max_diagonal_); |
| } |
| } |
| |
| lm_diagonal_ = (diagonal_ / radius_).array().sqrt(); |
| |
| LinearSolver::PerSolveOptions solve_options; |
| solve_options.D = lm_diagonal_.data(); |
| solve_options.q_tolerance = per_solve_options.eta; |
| // Disable r_tolerance checking. Since we only care about |
| // termination via the q_tolerance. As Nash and Sofer show, |
| // r_tolerance based termination is essentially useless in |
| // Truncated Newton methods. |
| solve_options.r_tolerance = -1.0; |
| |
| // Invalidate the output array lm_step, so that we can detect if |
| // the linear solver generated numerical garbage. This is known |
| // to happen for the DENSE_QR and then DENSE_SCHUR solver when |
| // the Jacobin is severely rank deficient and mu is too small. |
| InvalidateArray(num_parameters, step); |
| |
| // Instead of solving Jx = -r, solve Jy = r. |
| // Then x can be found as x = -y, but the inputs jacobian and residuals |
| // do not need to be modified. |
| LinearSolver::Summary linear_solver_summary = |
| linear_solver_->Solve(jacobian, residuals, solve_options, step); |
| |
| if (linear_solver_summary.termination_type == LINEAR_SOLVER_FATAL_ERROR) { |
| LOG(WARNING) << "Linear solver fatal error: " |
| << linear_solver_summary.message; |
| } else if (linear_solver_summary.termination_type == LINEAR_SOLVER_FAILURE) { |
| LOG(WARNING) << "Linear solver failure. Failed to compute a step: " |
| << linear_solver_summary.message; |
| } else if (!IsArrayValid(num_parameters, step)) { |
| LOG(WARNING) << "Linear solver failure. Failed to compute a finite step."; |
| linear_solver_summary.termination_type = LINEAR_SOLVER_FAILURE; |
| } else { |
| VectorRef(step, num_parameters) *= -1.0; |
| } |
| reuse_diagonal_ = true; |
| |
| if (per_solve_options.dump_format_type == CONSOLE || |
| (per_solve_options.dump_format_type != CONSOLE && |
| !per_solve_options.dump_filename_base.empty())) { |
| if (!DumpLinearLeastSquaresProblem(per_solve_options.dump_filename_base, |
| per_solve_options.dump_format_type, |
| jacobian, |
| solve_options.D, |
| residuals, |
| step, |
| 0)) { |
| LOG(ERROR) << "Unable to dump trust region problem." |
| << " Filename base: " << per_solve_options.dump_filename_base; |
| } |
| } |
| |
| TrustRegionStrategy::Summary summary; |
| summary.residual_norm = linear_solver_summary.residual_norm; |
| summary.num_iterations = linear_solver_summary.num_iterations; |
| summary.termination_type = linear_solver_summary.termination_type; |
| return summary; |
| } |
| |
| void LevenbergMarquardtStrategy::StepAccepted(double step_quality) { |
| CHECK_GT(step_quality, 0.0); |
| radius_ = |
| radius_ / std::max(1.0 / 3.0, 1.0 - pow(2.0 * step_quality - 1.0, 3)); |
| radius_ = std::min(max_radius_, radius_); |
| decrease_factor_ = 2.0; |
| reuse_diagonal_ = false; |
| } |
| |
| void LevenbergMarquardtStrategy::StepRejected(double step_quality) { |
| radius_ = radius_ / decrease_factor_; |
| decrease_factor_ *= 2.0; |
| reuse_diagonal_ = true; |
| } |
| |
| double LevenbergMarquardtStrategy::Radius() const { return radius_; } |
| |
| } // namespace internal |
| } // namespace ceres |