| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2015 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: keir@google.com (Keir Mierle) |
| // |
| // Computation of the Jacobian matrix for vector-valued functions of multiple |
| // variables, using automatic differentiation based on the implementation of |
| // dual numbers in jet.h. Before reading the rest of this file, it is adivsable |
| // to read jet.h's header comment in detail. |
| // |
| // The helper wrapper AutoDiff::Differentiate() computes the jacobian of |
| // functors with templated operator() taking this form: |
| // |
| // struct F { |
| // template<typename T> |
| // bool operator()(const T *x, const T *y, ..., T *z) { |
| // // Compute z[] based on x[], y[], ... |
| // // return true if computation succeeded, false otherwise. |
| // } |
| // }; |
| // |
| // All inputs and outputs may be vector-valued. |
| // |
| // To understand how jets are used to compute the jacobian, a |
| // picture may help. Consider a vector-valued function, F, returning 3 |
| // dimensions and taking a vector-valued parameter of 4 dimensions: |
| // |
| // y x |
| // [ * ] F [ * ] |
| // [ * ] <--- [ * ] |
| // [ * ] [ * ] |
| // [ * ] |
| // |
| // Similar to the 2-parameter example for f described in jet.h, computing the |
| // jacobian dy/dx is done by substutiting a suitable jet object for x and all |
| // intermediate steps of the computation of F. Since x is has 4 dimensions, use |
| // a Jet<double, 4>. |
| // |
| // Before substituting a jet object for x, the dual components are set |
| // appropriately for each dimension of x: |
| // |
| // y x |
| // [ * | * * * * ] f [ * | 1 0 0 0 ] x0 |
| // [ * | * * * * ] <--- [ * | 0 1 0 0 ] x1 |
| // [ * | * * * * ] [ * | 0 0 1 0 ] x2 |
| // ---+--- [ * | 0 0 0 1 ] x3 |
| // | ^ ^ ^ ^ |
| // dy/dx | | | +----- infinitesimal for x3 |
| // | | +------- infinitesimal for x2 |
| // | +--------- infinitesimal for x1 |
| // +----------- infinitesimal for x0 |
| // |
| // The reason to set the internal 4x4 submatrix to the identity is that we wish |
| // to take the derivative of y separately with respect to each dimension of x. |
| // Each column of the 4x4 identity is therefore for a single component of the |
| // independent variable x. |
| // |
| // Then the jacobian of the mapping, dy/dx, is the 3x4 sub-matrix of the |
| // extended y vector, indicated in the above diagram. |
| // |
| // Functors with multiple parameters |
| // --------------------------------- |
| // In practice, it is often convenient to use a function f of two or more |
| // vector-valued parameters, for example, x[3] and z[6]. Unfortunately, the jet |
| // framework is designed for a single-parameter vector-valued input. The wrapper |
| // in this file addresses this issue adding support for functions with one or |
| // more parameter vectors. |
| // |
| // To support multiple parameters, all the parameter vectors are concatenated |
| // into one and treated as a single parameter vector, except that since the |
| // functor expects different inputs, we need to construct the jets as if they |
| // were part of a single parameter vector. The extended jets are passed |
| // separately for each parameter. |
| // |
| // For example, consider a functor F taking two vector parameters, p[2] and |
| // q[3], and producing an output y[4]: |
| // |
| // struct F { |
| // template<typename T> |
| // bool operator()(const T *p, const T *q, T *z) { |
| // // ... |
| // } |
| // }; |
| // |
| // In this case, the necessary jet type is Jet<double, 5>. Here is a |
| // visualization of the jet objects in this case: |
| // |
| // Dual components for p ----+ |
| // | |
| // -+- |
| // y [ * | 1 0 | 0 0 0 ] --- p[0] |
| // [ * | 0 1 | 0 0 0 ] --- p[1] |
| // [ * | . . | + + + ] | |
| // [ * | . . | + + + ] v |
| // [ * | . . | + + + ] <--- F(p, q) |
| // [ * | . . | + + + ] ^ |
| // ^^^ ^^^^^ | |
| // dy/dp dy/dq [ * | 0 0 | 1 0 0 ] --- q[0] |
| // [ * | 0 0 | 0 1 0 ] --- q[1] |
| // [ * | 0 0 | 0 0 1 ] --- q[2] |
| // --+-- |
| // | |
| // Dual components for q --------------+ |
| // |
| // where the 4x2 submatrix (marked with ".") and 4x3 submatrix (marked with "+" |
| // of y in the above diagram are the derivatives of y with respect to p and q |
| // respectively. This is how autodiff works for functors taking multiple vector |
| // valued arguments (up to 6). |
| // |
| // Jacobian NULL pointers |
| // ---------------------- |
| // In general, the functions below will accept NULL pointers for all or some of |
| // the Jacobian parameters, meaning that those Jacobians will not be computed. |
| |
| #ifndef CERES_PUBLIC_INTERNAL_AUTODIFF_H_ |
| #define CERES_PUBLIC_INTERNAL_AUTODIFF_H_ |
| |
| #include <stddef.h> |
| |
| #include "ceres/jet.h" |
| #include "ceres/internal/eigen.h" |
| #include "ceres/internal/fixed_array.h" |
| #include "ceres/internal/variadic_evaluate.h" |
| #include "glog/logging.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| // Extends src by a 1st order pertubation for every dimension and puts it in |
| // dst. The size of src is N. Since this is also used for perturbations in |
| // blocked arrays, offset is used to shift which part of the jet the |
| // perturbation occurs. This is used to set up the extended x augmented by an |
| // identity matrix. The JetT type should be a Jet type, and T should be a |
| // numeric type (e.g. double). For example, |
| // |
| // 0 1 2 3 4 5 6 7 8 |
| // dst[0] [ * | . . | 1 0 0 | . . . ] |
| // dst[1] [ * | . . | 0 1 0 | . . . ] |
| // dst[2] [ * | . . | 0 0 1 | . . . ] |
| // |
| // is what would get put in dst if N was 3, offset was 3, and the jet type JetT |
| // was 8-dimensional. |
| template <typename JetT, typename T, int N> |
| inline void Make1stOrderPerturbation(int offset, const T* src, JetT* dst) { |
| DCHECK(src); |
| DCHECK(dst); |
| for (int j = 0; j < N; ++j) { |
| dst[j].a = src[j]; |
| dst[j].v.setZero(); |
| dst[j].v[offset + j] = T(1.0); |
| } |
| } |
| |
| // Takes the 0th order part of src, assumed to be a Jet type, and puts it in |
| // dst. This is used to pick out the "vector" part of the extended y. |
| template <typename JetT, typename T> |
| inline void Take0thOrderPart(int M, const JetT *src, T dst) { |
| DCHECK(src); |
| for (int i = 0; i < M; ++i) { |
| dst[i] = src[i].a; |
| } |
| } |
| |
| // Takes N 1st order parts, starting at index N0, and puts them in the M x N |
| // matrix 'dst'. This is used to pick out the "matrix" parts of the extended y. |
| template <typename JetT, typename T, int N0, int N> |
| inline void Take1stOrderPart(const int M, const JetT *src, T *dst) { |
| DCHECK(src); |
| DCHECK(dst); |
| for (int i = 0; i < M; ++i) { |
| Eigen::Map<Eigen::Matrix<T, N, 1> >(dst + N * i, N) = |
| src[i].v.template segment<N>(N0); |
| } |
| } |
| |
| // This is in a struct because default template parameters on a |
| // function are not supported in C++03 (though it is available in |
| // C++0x). N0 through N9 are the dimension of the input arguments to |
| // the user supplied functor. |
| template <typename Functor, typename T, |
| int N0 = 0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0, |
| int N5 = 0, int N6 = 0, int N7 = 0, int N8 = 0, int N9 = 0> |
| struct AutoDiff { |
| static bool Differentiate(const Functor& functor, |
| T const *const *parameters, |
| int num_outputs, |
| T *function_value, |
| T **jacobians) { |
| // This block breaks the 80 column rule to keep it somewhat readable. |
| DCHECK_GT(num_outputs, 0); |
| DCHECK((!N1 && !N2 && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) || |
| ((N1 > 0) && !N2 && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) || |
| ((N1 > 0) && (N2 > 0) && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) || // NOLINT |
| ((N1 > 0) && (N2 > 0) && (N3 > 0) && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) || // NOLINT |
| ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && !N5 && !N6 && !N7 && !N8 && !N9) || // NOLINT |
| ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && !N6 && !N7 && !N8 && !N9) || // NOLINT |
| ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && !N7 && !N8 && !N9) || // NOLINT |
| ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && !N8 && !N9) || // NOLINT |
| ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && (N8 > 0) && !N9) || // NOLINT |
| ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && (N8 > 0) && (N9 > 0))) // NOLINT |
| << "Zero block cannot precede a non-zero block. Block sizes are " |
| << "(ignore trailing 0s): " << N0 << ", " << N1 << ", " << N2 << ", " |
| << N3 << ", " << N4 << ", " << N5 << ", " << N6 << ", " << N7 << ", " |
| << N8 << ", " << N9; |
| |
| typedef Jet<T, N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9> JetT; |
| FixedArray<JetT, (256 * 7) / sizeof(JetT)> x( |
| N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9 + num_outputs); |
| |
| // These are the positions of the respective jets in the fixed array x. |
| const int jet0 = 0; |
| const int jet1 = N0; |
| const int jet2 = N0 + N1; |
| const int jet3 = N0 + N1 + N2; |
| const int jet4 = N0 + N1 + N2 + N3; |
| const int jet5 = N0 + N1 + N2 + N3 + N4; |
| const int jet6 = N0 + N1 + N2 + N3 + N4 + N5; |
| const int jet7 = N0 + N1 + N2 + N3 + N4 + N5 + N6; |
| const int jet8 = N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7; |
| const int jet9 = N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8; |
| |
| const JetT *unpacked_parameters[10] = { |
| x.get() + jet0, |
| x.get() + jet1, |
| x.get() + jet2, |
| x.get() + jet3, |
| x.get() + jet4, |
| x.get() + jet5, |
| x.get() + jet6, |
| x.get() + jet7, |
| x.get() + jet8, |
| x.get() + jet9, |
| }; |
| |
| JetT* output = x.get() + N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9; |
| |
| // Invalidate the output Jets, so that we can detect if the user |
| // did not assign values to all of them. |
| for (int i = 0; i < num_outputs; ++i) { |
| output[i].a = kImpossibleValue; |
| output[i].v.setConstant(kImpossibleValue); |
| } |
| |
| #define CERES_MAKE_1ST_ORDER_PERTURBATION(i) \ |
| if (N ## i) { \ |
| internal::Make1stOrderPerturbation<JetT, T, N ## i>( \ |
| jet ## i, \ |
| parameters[i], \ |
| x.get() + jet ## i); \ |
| } |
| CERES_MAKE_1ST_ORDER_PERTURBATION(0); |
| CERES_MAKE_1ST_ORDER_PERTURBATION(1); |
| CERES_MAKE_1ST_ORDER_PERTURBATION(2); |
| CERES_MAKE_1ST_ORDER_PERTURBATION(3); |
| CERES_MAKE_1ST_ORDER_PERTURBATION(4); |
| CERES_MAKE_1ST_ORDER_PERTURBATION(5); |
| CERES_MAKE_1ST_ORDER_PERTURBATION(6); |
| CERES_MAKE_1ST_ORDER_PERTURBATION(7); |
| CERES_MAKE_1ST_ORDER_PERTURBATION(8); |
| CERES_MAKE_1ST_ORDER_PERTURBATION(9); |
| #undef CERES_MAKE_1ST_ORDER_PERTURBATION |
| |
| if (!VariadicEvaluate<Functor, JetT, |
| N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>::Call( |
| functor, unpacked_parameters, output)) { |
| return false; |
| } |
| |
| internal::Take0thOrderPart(num_outputs, output, function_value); |
| |
| #define CERES_TAKE_1ST_ORDER_PERTURBATION(i) \ |
| if (N ## i) { \ |
| if (jacobians[i]) { \ |
| internal::Take1stOrderPart<JetT, T, \ |
| jet ## i, \ |
| N ## i>(num_outputs, \ |
| output, \ |
| jacobians[i]); \ |
| } \ |
| } |
| CERES_TAKE_1ST_ORDER_PERTURBATION(0); |
| CERES_TAKE_1ST_ORDER_PERTURBATION(1); |
| CERES_TAKE_1ST_ORDER_PERTURBATION(2); |
| CERES_TAKE_1ST_ORDER_PERTURBATION(3); |
| CERES_TAKE_1ST_ORDER_PERTURBATION(4); |
| CERES_TAKE_1ST_ORDER_PERTURBATION(5); |
| CERES_TAKE_1ST_ORDER_PERTURBATION(6); |
| CERES_TAKE_1ST_ORDER_PERTURBATION(7); |
| CERES_TAKE_1ST_ORDER_PERTURBATION(8); |
| CERES_TAKE_1ST_ORDER_PERTURBATION(9); |
| #undef CERES_TAKE_1ST_ORDER_PERTURBATION |
| return true; |
| } |
| }; |
| |
| } // namespace internal |
| } // namespace ceres |
| |
| #endif // CERES_PUBLIC_INTERNAL_AUTODIFF_H_ |